“氧化应激”一词最早由 Helmut Sies 1 提出,指的是氧化剂和抗氧化防御之间的不平衡,这种不平衡可能导致生物系统受损。从那时起,氧化还原生物学领域已经从病理学中的氧化应激概念发展到生理学中的氧化还原信号传导 2 – 4 。氧化应激已被证明与多种疾病有关,包括动脉粥样硬化、慢性阻塞性肺病 (COPD)、阿尔茨海默病和癌症,这揭示了氧化剂导致细胞损伤的多种机制 5 。然而,氧化应激参与疾病病理的程度非常多变,因此增加抗氧化防御的有效性在某些疾病中可能有限。氧化应激涉及由氧和氮衍生的所谓活性物质的化学反应 (框 1 )。了解这些物质中的哪些会对大分子造成损害有助于为改善抗氧化防御的治疗方法提供理论依据。然而,到目前为止,小分子在治疗上的应用令人失望,主要是因为人们对抗氧化剂的作用原理过于乐观和不正确的假设 6 。例如,清除羟基自由基 (•OH) 是不切实际的,但通过减少过氧化氢 (H 2 O 2 ) 的产生来阻止其形成可以有效预防损伤。氧化应激领域的主要误解之一是小分子可以清除超氧化物 (O 2 • − ) 或 H 2 O 2 ,而小分子在细胞内也是无效的。这是因为抗氧化酶会与数千种
简介。神经退行性疾病是中枢神经系统无法治愈的疾病,这会导致患者日常生活的严重干扰,导致严重的残疾甚至死亡。这些条件的原因没有完全阐明,但是越来越多的理论参与涉及氧化应激。工作的目的。研究,分析和确定氧化应激和线粒体功能障碍在神经退行性麦芽糖原病原体中的作用。材料和方法。为了实现拟议的目标,分析了超过170个书目来源,这些书目来源在USMF“ Nicolae Testemitanu”的医学科学和电子库Medline,Hinari,Hinari,PubMed,PubMed,Google Academic的资源中确定。重点一直放在过去10年的出版物上。结果。大脑是人体的重要器官,需要持续的氧气,但是缺乏抗氧化剂的储量以及无法再生其容易受到氧化损伤的影响。活性氧,例如:过氧化氢(H 2 O 2),超氧化物(O 2 - )和羟基自由基(OH-)是细胞代谢的生理产物。但是,ROS和抗氧化剂之间的失衡会导致氧化应激,对所有组织,尤其是对大脑的不利影响。在神经模型产生疾病中,例如阿尔茨海默氏症和帕金森氏症,观察到增加的抗氧化剂并增加了金属离子浓度,例如铁和铜,这会导致不可逆的脑损伤。结论。随后的研究对氧化应激的致病性是神经退行性疾病发展的主要因素,目前将无疑在治疗这些疾病的治疗方面无法治愈。关键字:线粒体 - 内部功能障碍,神经退行性疾病,活性氧,氧化应激。
范围:甜菜红素色素因其生物活性和抗炎特性而日益受到重视,尽管缺乏研究来证明单个甜菜红素的贡献。本文旨在比较四种主要甜菜红素对炎症和细胞保护标志物的影响,并强调两个主要亚类:甜菜红素和甜菜黄素之间潜在的结构相关关系。方法和结果:小鼠 RAW 264.7 巨噬细胞在与浓度为 1 至 100 µ M 的甜菜红素 (甜菜红素、新甜菜红素) 和甜菜黄素 (印度黄素、淡黄素 I) 孵育后,受到细菌脂多糖的刺激。所有甜菜红素均抑制促炎标志物 IL-6、IL-1 𝜷 、iNOS 和 COX-2 的表达,且甜菜红素的效果比甜菜黄素更强。相反,HO-1 和 gGCS 表现出混合且仅适度的诱导作用,而甜菜红素的效果更为突出。虽然所有甜菜红素都抑制了超氧化物生成酶 NADPH 氧化酶 2 (NOX-2) 的 mRNA 水平,但只有甜菜红素能够抵消过氧化氢诱导的活性氧 (ROS) 生成,这与它们的自由基清除潜力一致。此外,甜菜红素具有促氧化特性,使 ROS 生成量超过过氧化氢刺激。结论:总之,所有甜菜红素都表现出抗炎特性,尽管只有甜菜红素表现出自由基清除能力,这表明在氧化应激条件下可能存在不同的反应,这需要进一步研究。
1969 年,人们发现一种以前未知功能的牛红细胞蛋白具有催化超氧化物自由基歧化活性 (1-3)。这种酶,即超氧化物歧化酶,是一种金属蛋白,每分子含有 2 (1.8-2.0) 个铜原子和 2 (1.7-1.9) 个锌原子,分子量为 33,000,由两个大小相同的亚基组成 (4, 5)。从其他真核生物中纯化的铜锌歧化酶在分子量、亚基结构、氨基酸组成、铜锌含量以及对纯化所用的氯仿-乙醇混合物的稳定性方面与牛红细胞歧化酶相似 (2, 3)。细菌来源的酶代表一类独特的超氧化物歧化酶,其每个分子含有 1-2 个锰原子作为金属辅因子,对氯仿-乙醇处理不稳定,其氨基酸组成与铜锌歧化酶明显不同(2、3、6-8)。细菌酶的分子量约为 40,000,每个酶含有两个分子量为 20,000 的亚基。最近又分离出两种超氧化物歧化酶,其稳定性、纯化特性和氨基酸组成与细菌锰歧化酶相似。一种来自鸡肝线粒体(8)的超氧化物歧化酶每个分子含有 2.3 个锰原子,虽然它是四聚体,但其亚基分子量与细菌含锰酶相同。另一种是含有铁(每个分子约 1 个原子)而不是锰的,已从大肠杆菌中分离出来(9),是一种二聚体,其亚基大小相同(分子量 19,000)。已在各种需氧、厌氧和耐氧厌氧微生物中测量了超氧化物歧化酶活性水平(10)。从观察到的相关性来看,
铜是各种细胞功能所需的必不可少的微量营养素,与此同时,铜的积累超出了细胞的需求(Khalfaoui-Hassani等,2021)。铜存在于体内的两个状态,即Cu +和Cu 2+。在人体流体中,铜主要是Cu 2+的形式,而在细胞内部,铜主要存在于Cu +(Kucková等,2015)。在氧化酶的作用下,存在Cu +和Cu 2+之间的转化,电子转移是通过Fenton反应发生的,导致ROS产生,包括超氧化物阴离子(O 2-),氮氧化物(NO-),羟基自由基(OH)和羟基自由基(OH)和氢(hydrodical of plogogin)(hydrodical氧化物(OH)和氢(H 2 O 2 O 2 O 2)(Valko 2)(Valko等)。ROS可以氧化并损害生物分子,包括蛋白质,核酸和脂质。此外,ROS可能会干扰铁硫簇的合成(Slezak等,2021)。铜,从消化道中吸收,经历肝代谢,形成ceruloplasmin,这是血液中含铜的主要蛋白质,在多种身体器官中广泛存在。ceruloplasmin负责在血液中运输95%的铜,这使其成为评估人体铜水平的可靠标记(Piacenza等,2021)。特定铜代谢疾病的诊断涉及通过测量Ceruloplasmin(CP)含量评估内部铜水平(Bandmann等,2015)。当ceruloplasmin(CP)构成靶细胞表面时,该表面与其相应的受体相互作用以释放铜。然后将释放的铜吸收并被靶细胞吸收和利用。CP通过CP的结合和释放允许在多个组织和器官中明显分布铜(Liu Z.等,2022)。但是,铜不绑定到
目标:Dapagliflozin是一种用于治疗2型糖尿病的药物,也用于某些心力衰竭和慢性肾脏疾病状况。在这项研究中,我们研究了Dapagliflozin(DAPA)对马内二醛(MDA),脂质氢过氧化物(LOOH),超氧化物歧化酶(SOD),总硫醇(T-SH)和总抗氧化能力(TAC)和氧化应激抗性抗应激胁迫的影响。方法:用甲氨蝶呤(MTX)(10-0.160μM)和DAPA(10-0.150 µM)处理H9C2心肌细胞细胞。测量细胞活力和氧化应激参数。结果:与MTX组相比,对照组和DAPA组的MDA和LOOH水平显着降低(p <0.001)和DAPA组(分别为P <0.001; P <0.05),而SOD(两者的P <0.001),T-SH(p <0.001; P <0.001; P <0.01; p <0.01; p <0.01&p <0.05;与MTX组相比,DAPA组。除MDA外,对照组和DAPA组之间没有显着差异。但是,与对照组相比,DAPA组的MDA水平明显更高(p <0.05)。MDA水平的de裂与DAPA治疗组中的SOD活性的增加显着相关(R:-0.814; P:0.014)。结论:细胞活力增加,MDA和LOOH的水平降低,而SOD,T-SH和TAC水平在H9C2心肌细胞中升高,由氧化应激诱导。这项研究中获得的发现表明,DAPA可能对由氧化应激引起的心肌病具有有益作用。关键字:达帕格列申辛,H9C2心肌细胞,丙二醛,甲氨蝶呤,氧化应激,超氧化物蒸馏酶
心肺旁路(CPB)是开放心脏手术期间必要的生命支持。由CPB引起的全身性炎症反应综合征(SIRS)众所周知,可以增加术后发病率和死亡率(1,2)。急性呼吸窘迫综合征(ARDS)和急性肺损伤(ALI),其特征是与SIR相关的肺水肿,在CPB和CPB之后也被诱导,显着促进了术后的发病率和死亡率(3-6)。炎症反应的成分包括补体的激活,白细胞上粘附分子的表面表达增加以及在系统性循环中存在促炎细胞因子的存在(7-12)。中性粒细胞是白细胞的主要部分,通过产生超氧化物自由基和化学介质的释放在SIR中起重要作用(12,13)。已经证明,激活的中性粒细胞是CPB引起的肺功能障碍的最重要的启动事件之一(14)。sivelestat是一种合成的,特定的,低分子量的中性粒细胞弹性酶抑制剂(15)。已显示它可以降低中性粒细胞弹性酶水平和白介素6的产生,并在体外循环期间保留中性粒细胞的可变形性(6、16、17)。几项临床研究表明,西维勒斯塔(Sivelestat)对接受CPB进行心血管手术的患者的好处(6,12)。但是,这些研究仅评估了计划的心脏手术。 与预定的心脏手术相比,紧急心血管手术通常具有更严重的ALI(15,18)。但是,这些研究仅评估了计划的心脏手术。与预定的心脏手术相比,紧急心血管手术通常具有更严重的ALI(15,18)。该药物可能会阻止SIRS的不良反应,并且可能是减轻接受紧急心血管手术的患者ALI的最佳疗法之一。因此,我们设计了这项研究,以评估Sivelestat对急诊心血管手术后ALI患者肺部保护的影响。
摘要:我们已经证明,内皮特异性 DHFR(二氢叶酸还原酶)缺乏是 eNOS(内皮 NO 合酶)解偶联和腹主动脉瘤 (AAA) 形成的原因。在本文中,我们研究了 microRNA-192-5p 在介导 NOX(NADPH 氧化酶)依赖性 DHFR 缺乏和 AAA 形成中的新作用。microRNA-192-5p 预计以 DHFR 为靶点。有趣的是,人类 AAA 患者的智人 - microRNA-192-5p 表达显著上调。在暴露于过氧化氢 (H 2 O 2 ) 的人主动脉内皮细胞中,智人 - microRNA-192-5p 表达显著上调。这伴随着 DHFR mRNA 和蛋白质表达的显著下调,而智人 - microRNA-192-5p 特异性抑制剂可恢复这种下调。值得注意的是,microRNA-192-5p 表达在血管紧张素 II(血管紧张素 II)输注的 hph-1(高苯丙氨酸血症 1)小鼠中显著上调,而在 hph-1–NOX1、hph-1–NOX2、hph-1–中性粒细胞胞质因子 1 和 hph-1–NOX4 双突变小鼠中减弱,AAA 发病率也消失,表明 microRNA-192-5p 在 NOX 激活后具有下游效应作用。在超声和尸检中,用小鼠–microRNA-192-5p 抑制剂进行体内治疗可减弱血管紧张素 II 输注的 hph-1 小鼠的腹主动脉扩张。它还逆转了血管重塑的特征,包括基质降解、外膜肥大和腔内血栓形成。这些动物恢复了 DHFR mRNA 和蛋白质表达,减弱了超氧化物的产生,重新偶联了 eNOS,并保留了 NO 的生物利用度。总之,我们的数据首次证明了 microRNA-192-5p 在介导 NOX 依赖性 DHFR 缺乏和 AAA 形成中起着关键作用,抑制 DHFR 缺乏和 AAA 形成可有效减缓 AAA 的发展。由于小鼠和人类 microRNA-192-5p 序列相同,microRNA-192-5p 抑制剂可能很容易转化为治疗 AAA 的新型疗法。(高血压。2021;78:282–293。DOI:10.1161/HYPERTENSIONAHA.120.15070。)• 数据补充
1显微镜核心设施,Max Planck感染生物学研究所,CharitePlatz 1,10117柏林,德国; 2Charité - 柏林大学柏林大学成员,柏林弗里伊大学和洪堡乌纳弗蒂蒂特·祖林,柏林,ALS和其他运动神经元疾病中心,德国柏林13353; 3 Max Planck感染生物学研究所,柏林10117,德国#通讯作者摘要中性粒细胞是专门生产大量活性氧(ROS)以杀死微生物的人。然而,这些细胞调节不同ROS物质并减轻氧化应激的机制尚不清楚。在这里,我们证明了超氧化物歧化酶1(SOD1)在中性粒细胞中的ROS形成和抗菌活性中起着至关重要的作用。我们的发现表明,SOD1在ROS爆发过程中调节了超氧化物(O 2-)与过氧化氢(H 2 O 2)的比率,从而支持髓过氧化物酶(MPO)酶促活性。通过采用生化,细胞生物学和遗传方法,我们表明SOD1对于Netosis和微生物感染过程中的ROS形成至关重要,因为它可以减少氧化应激,并启用完全嗜中性粒细胞激活。SOD1活性的损害会增加半胱氨酸的氧化和脂质过氧化。 从患有SOD1突变的患者中分离出的中性粒细胞降低了ROS的产生,中性粒细胞外陷阱(NET)形成受损。 我们的发现表明SOD1是氧化爆发中的新调节因素,可以使中性粒细胞的全部免疫学反应。 简介SOD1活性的损害会增加半胱氨酸的氧化和脂质过氧化。从患有SOD1突变的患者中分离出的中性粒细胞降低了ROS的产生,中性粒细胞外陷阱(NET)形成受损。我们的发现表明SOD1是氧化爆发中的新调节因素,可以使中性粒细胞的全部免疫学反应。简介
定义有助于病理干扰素(IFN)1型少年性皮肌炎(JDM)的宿主机制的抽象目标。方法在CD4 +,CD8 +,CD14 +和CD19 +细胞上进行了RNA序列,这些细胞从预处理和治疗JDM(预处理n = 10,治疗n = 11)和年龄/性别匹配的儿童健康对照(CHC n = 4)。通过荧光显微镜,通过13 C葡萄糖摄取测定法和氧化的线粒体DNA(OXMTDNA)含量评估线粒体形态和超氧化物,通过dot-blot评估。健康控制PBMC和JDM预处理PBMC与IFN-α,OxmtDNA,CGAS抑制剂,TLR-9拮抗剂和/或N-乙酰半胱氨酸(NAC)培养。通过qPCR测量IFN刺激的基因(ISGS)表达。 功能实验的患者总数和对照组,JDM n = 82,总CHC n = 35。 结果与JDM CD14+单核细胞中ISG表达增加相关的线粒体相关基因表达失调。 线粒体相关基因表达的改变与线粒体生物学的改变相似,包括“巨胶囊成分”,细胞代谢和超氧化物歧化酶(SOD)1的基因表达降低。 这与氧化的线粒体(OXMT)DNA的产生增强有关。 oxmtDNA在健康的PBMC中诱导的ISG表达,通过靶向氧化应激和细胞内核酸感觉途径来阻止。 结论这些结果描述了一种新的途径,其中JDM CD14+单核细胞中的线粒体生物学改变导致OxmtDNA产生并刺激ISG表达。通过qPCR测量IFN刺激的基因(ISGS)表达。功能实验的患者总数和对照组,JDM n = 82,总CHC n = 35。结果与JDM CD14+单核细胞中ISG表达增加相关的线粒体相关基因表达失调。线粒体相关基因表达的改变与线粒体生物学的改变相似,包括“巨胶囊成分”,细胞代谢和超氧化物歧化酶(SOD)1的基因表达降低。这与氧化的线粒体(OXMT)DNA的产生增强有关。oxmtDNA在健康的PBMC中诱导的ISG表达,通过靶向氧化应激和细胞内核酸感觉途径来阻止。结论这些结果描述了一种新的途径,其中JDM CD14+单核细胞中的线粒体生物学改变导致OxmtDNA产生并刺激ISG表达。互补实验表明,在体外实验条件下,通过抗氧化剂NAC,TLR9拮抗剂和较小程度的CGAS抑制剂靶向这些途径,抑制了预处理JDM PBMC中的ISG表达。针对此途径具有JDM和其他IFN 1型自身免疫性疾病的治疗潜力。