MicroLED 代表着一个令人兴奋的机会,有可能降低超大面积显示器以及一些小面积显示器应用的成本。高能量紫外激光器是降低生产成本、提高产量和改善质量的关键。Coherent 提供多种解决方案,从单一激光源、光学系统到集成系统,用于 MicroLED 制造中的三个重要过程:激光剥离 (LLO)、激光诱导正向转移 (LIFT) 和修复/修整。Coherent 还涵盖了整个 MicroLED 生产链的更多工艺步骤,从超短脉冲激光器的激光切割到二极管激光器的激光辅助键合 (LAB)。
主动目标正在积极地在所需的波长频谱中发射超短脉冲,可通过相机传感器检测到。这些主动目标需要一个驱动程序控制单元,该单元融合了传感摄像机网络。主动目标的最大优势是它们对污染和尘土飞扬的环境的稳健性,因为由于发光特性,信噪比可以保持高水平。另一个很大的优势是它们几乎可以将标记放置在任何受限空间中,因为可以定制和集成在很小的足迹上。即使是全面地面的特殊目标,也可以使用机械应力的最大耐加度度。主动目标主要用于高速自主应用中。
两支桑迪亚研究团队均与私营企业合作,在芝加哥地区贸易杂志《研发杂志》赞助的年度创新技术竞赛中荣获 R&D 100 奖。桑迪亚获奖者发明了组件分析软件 (Compass),它可以自动分析微观或宏观结构的化学成分,以及 MTR8500 超短距离 (VSR) OC-192 并行阵列转发器模块,该模块有望使超短距离(少于 300 米)光纤通信更快、更便宜。该软件由桑迪亚国家实验室的科学家 Paul Kotula (1822) 和 Michael Keenan (1812) 提交,与威斯康星州米德尔顿的 Thermo NORAN 联合参赛。该转发器由集成微系统部经理 Michael Daily 提交。1738,与位于阿尔伯克基的 EMCORE 光纤部门联合参赛。R&D 杂志挑选的技术专家选出 100 名年度竞赛获奖者。获奖者不仅必须是原创的,而且还必须显示出实际应用的前景。获奖者将在 10 月于芝加哥海军码头举行的宴会上接受表彰。桑迪亚国家实验室总裁 C. Paul Robinson 对这些 R&D 100 奖表示非常满意。“这些奖项都认可了科学应用领域的前沿创新,”Paul 说道。“几年来,我们一直专注于原子工程,Compass 软件提供了实现这一目标的重要信息。更快的信息传输革命已经使桑迪亚国家实验室的许多任务受益,而新的光纤转发器对推动信息革命做出了巨大贡献。” 组件分析软件
摘要:用超短激光脉冲对透明材料的受控处理需要详细而精确的了解,从激光能量沉积和材料内部能量转化到流体动力学弛豫和机械响应中的各种激光 - 物质相互作用机制。为了解决这个问题,我们首先基于飞秒泵和探针显微镜偏置镜开发了多时间的实验方法。泵是一个360-FS,1-μJ红外(1030 nm)激光脉冲,分开以提供515 nm的飞秒探头,并延迟可调节从飞秒到纳米秒的延迟。获得的时间分辨的阴影图像允许测量瞬态探针传输。然后,载体密度是通过使用Beer-Lambert Law和Drude模型方法来确定的,证明了大部分熔融二氧化硅内部略有临界等离子体的超快形成。并行,定量双折射图像通过使用光弹性定律来测量压力,从而通过发射GPA压力波的发射光弹性定律揭示了吸收的激光能量,这是激光脉冲后几百个picseconds。然后,使用多尺度型物理模型来解释实验观察结果,计算电子动力学,激光传播和流体动力响应。实验验证后,模拟允许确定局部基本材料特性(应力,密度和温度)的时间演变。我们的方法将来可以用来解释由超短激光脉冲引起的机械驱动的透明材料结构。实验和模拟结果的这种组合使我们能够定量讨论不同激光能量弛豫通道在发现整个相互作用情况的材料中的重要性。我们的模型预测20-GPA的最大初始应力载荷,最高晶格温度达到3.5 10 4K。我们还表明,通过发射弱冲击波,消散了总吸收激光能量的〜2%。
研究光介导的过程的追求驱动了能够产生X射线辐射脉冲的设施的发展(Ponseca等人。,2017年; Kranz&Wachtler,2021年; Chergui&Collet,2017年; Milne等。,2014年)。激光驱动的来源可以在各种能量中可靠地产生这种辐射,并将紧凑型设置的好处和高水平的整合性在多功能实验室中以负担得起的成本(与其他大型设施相比)相结合。对于超快泵 - 探针实验,光束生成的全光方法在两个或更多光束之间提供了出色的同步。这样的设施具有例如高级形状的泵脉冲(Assion等,1998;布鲁格曼等人。,2006年)以及不同波长范围中探针的内在性能,例如可见的,Terahertz和X射线,使用相同的泵。此处描述的来源安装在模块化的X射线光谱端站内,有可能促使使用多种互补方法进行全面研究[见De Roche等。(2003),Naumova等。 (2018),Dicke等。 (2018),Kunnus等。 (2020)和Kjaer等。 (2019)示例]。 激光驱动的等离子体X射线源(PXS)(Mallozzi等 ,1974年; Turcu&Dance,1999年; Benesch等。 ,2004年)基于将激光器聚焦为超短(低100 fs)脉冲持续时间,峰强度为10 15 –10 17 w cm 2的激光器(fullagar,fullagar,harbst et al。) ,2007年; Korn等。 ,2002年; Zamponi等。(2003),Naumova等。(2018),Dicke等。 (2018),Kunnus等。 (2020)和Kjaer等。 (2019)示例]。 激光驱动的等离子体X射线源(PXS)(Mallozzi等 ,1974年; Turcu&Dance,1999年; Benesch等。 ,2004年)基于将激光器聚焦为超短(低100 fs)脉冲持续时间,峰强度为10 15 –10 17 w cm 2的激光器(fullagar,fullagar,harbst et al。) ,2007年; Korn等。 ,2002年; Zamponi等。(2018),Dicke等。(2018),Kunnus等。(2020)和Kjaer等。(2019)示例]。激光驱动的等离子体X射线源(PXS)(Mallozzi等,1974年; Turcu&Dance,1999年; Benesch等。,2004年)基于将激光器聚焦为超短(低100 fs)脉冲持续时间,峰强度为10 15 –10 17 w cm 2的激光器(fullagar,fullagar,harbst et al。,2007年; Korn等。,2002年; Zamponi等。,2009年; Uhlig等。,2013年; Weisshaupt等人。,2014年; Afshari等。,2020)。这会导致表面原子和血浆在陡峭的梯度处的电离(Fullagar,Harbst等人。,2007年; Chen等。,2001年; Brunel,
•DBT AERO:替代双重箱尾飞机•Electra.Aero:混合电动,超短载飞机•E1AIR:使用甲醇生产燃料电池级氢的电力解决方案•五αα•五αα:Vertiport基础设施 Autonomous eVTOL for Heavy Payload • NEXA Capital Partners : Financial Advisory Services to Aerospace, Transport, Logistics • NUAIR : Non-Profit Economic Development Agency for UAS and AAM Sectors • Piasecki Aircraft Corporation : Hydrogen-Powered eVTOL and VTOL Aircraft • Roboxi : Autonomous Ground Vehicle for Runway Inspection/Maintenance • Thales USA : Advanced Avionics and Sensors • TruWeather Solutions : Advanced Weather AAM的分析我们邀请您回顾以下代表公司的个人资料。
非线性光学在激光技术中有着广泛的应用,包括光参量放大、电光开关、倍频和混频。从技术角度来看,研究非线性光学 (NLO) 特性对于设计 NLO 设备和理解控制光与物质相互作用的潜在机制至关重要。超短激光脉冲可以通过利用 NLO 特性、可饱和吸收 (SA) 来产生,因此可饱和吸收体是脉冲激光器中的关键光学元件。半导体可饱和吸收镜 (SESAM) 因其高稳定性而在商业上用作可饱和吸收体,但它具有制造工艺复杂和带宽有限的缺点。1 为了开发超快激光器,需要不同的 NLO 材料
具有高强度的固体表面的辐射,超短激光脉冲会触发各种二次过程,这些过程可能导致从mm向下到纳米范围的大范围内的瞬态和永久结构的形成。最突出的例子之一是嘴唇 - 激光引起的周期性表面结构。虽然嘴唇一直是一种科学的常绿植物近60年了,但结合了超快时间与所需的NM空间分辨率的实验方法仅在短暂脉冲,短脉冲,短波长无波长的电子激光器的出现时才获得。在这里,通过利用这些第四代光源的独特可能性来讨论该领域中的当前状态和未来观点,以通过时间域实验技术来解决基本的嘴唇问题,即为什么和激光辐照如何从“ chaotic”(粗糙的)表面启动a(粗糙的)表面上的结构。
薄玻璃切割中的时间空气脉冲效率 Madalin-Stefan Radu、Cristian Sarpe、Elena Ramela Ciobotea、Bastian Zielinski、Radu Constantinescu、Thomas Baumert 和 Camilo Florian* *通讯作者电子邮件:camilo.florian@uni-kassel.de。这是以下文章的预印本:Radu、Madalin-Stefan、Sarpe、Cristian、Ciobotea、Elena Ramela、Zielinski、Bastian、Constantinescu、Radu、Baumert、Thomas 和 Florian、Camilo。 “时间艾里脉冲在薄玻璃切割中的效率” Zeitschrift für Physikalische Chemie,2024 年。最终认证和印刷版本可在线获取:https://doi.org/10.1515/zpch-2024- 0911 超短脉冲激光源是用于微和纳米加工大带隙介电材料的有用工具。这些脉冲的最大优势之一是能够达到高强度峰值,即使在对激光波长透明的材料中也能促进吸收。此外,如果修改脉冲时间分布,能量吸收可以烧蚀直径小、深度大的孔。在这项工作中,我们提出了初步结果,将三种类型的脉冲作为玻璃切割的前体:带宽受限(785 nm 时为 30 fs)、正色散和负色散时间艾里脉冲 (TAP)。所选材料为厚度为 170 μm 的钠钙玻璃,在不同激光能量和扫描速度下,以 1 kHz 的重复率在紧密(50 倍物镜)和松散(20 倍物镜)聚焦条件下进行刻划。激光加工后,使用自制的四点弯曲台通过机械应力对玻璃进行切割。我们分析了三种激光脉冲在表面和横截面上的刻划线质量以及断裂后所需的断裂力。我们报告称,与其他实施的脉冲相比,正 TAP 在玻璃样品上产生了整齐、平整的切割边缘。关键词:玻璃切割;超短脉冲激光;高纵横比结构;激光加工;时间脉冲整形;薄玻璃