溶液形成已被证明是增加陶瓷硬度的方法之一。5 先前的研究已经制备了许多 HEB 组合物,它们有可能比单个组分硼化物具有更高的硬度。8–10 例如,Gu 等人 11 研究了 (Hf 0.2 、Nb 0.2 、Ta 0.2 、Ti 0.2 、Zr 0.2 )B 2 作为典型的 HEB。在 2000 ◦C 下进行放电等离子烧结 (SPS) 后获得的维氏硬度 (VH) 为 22.44 GPa,载荷为 9.8 N。基于该研究,Feng 等人 4 制备了一系列名义上纯净的 HEB。基本成分为 (Hf 0.2 ,Zr 0.2 ,Ti 0.2 ,Ta 0.2 ,Nb 0.2 )B 2 ,其中 Nb 用 V、Cr 或 Mo 代替,Ta 和 Nb 用 Mo 和 W 代替。含有 Cr、Mo 或 Mo 和 W 组合的成分具有最高的 VH 值,在 0.49 N 负载下超过 40 GPa。同样,Quin 等人研究了具有非等摩尔浓度 Mo 和 W 的各种 HEB 成分。根据该研究,(Zr 0.225 ,Hf 0.225 ,Nb 0.225 ,Mo 0.225 ,W 0.1 )B 2 在 1.96 N 负载下具有 27.5 GPa 的 VH。12
添加材料并通过细化组成晶粒来提高强度(图1中Ⅰ)。理想的最终目标材料是纳米多晶体,其中纳米级金刚石或立方氮化硼晶粒直接紧密地结合在一起,而不包含任何粘合剂材料(图1中Ⅱ)。最终材料可以形成与单晶金刚石相似的高精度切削刃。此外,这种材料的不可解理性使切削刃的强度超过了单晶的强度。由于这些优异的特性,该材料在精密和微加工应用中很有前途。然而,这种创新的纳米晶材料不能仅仅通过扩展传统技术来创造。相反,开发创新的新工艺(产品创新)至关重要。我们开始研究和开发纳米多晶金刚石和纳米多晶立方氮化硼,旨在创造适用于更高速、更高效和更高精度切削应用的终极切削刀具材料。我们经过多年的努力,通过建立超高压新技术和直接转化烧结工艺,成功研制出这些新型超硬材料。本文详细介绍了这些新型超硬材料的开发、特性和应用。
