TDK 企业在 2025 年 CES 上为人工智能新时代铺平道路 ● TDK 将 AI、绿色转型和数字化转型确定为未来十年的大趋势 ● 关键发展包括用于节能 AI 计算的“自旋忆阻器”和集成边缘传感、组件和 AI 功能的工业 4.0 解决方案的 TDK SensEI 的形成 ● 为汽车、工业、能源和 ICT 领域提供尖端解决方案 ● 战略合作伙伴关系包括与 NEOM McLaren Formula E 车队在赛车创新方面的技术合作,以及即将发布的视障人士无障碍产品 2024 年 12 月 10 日 TDK 公司 (TSE: 6762) 将于 2025 年 1 月 7 日至 12 日在内华达州拉斯维加斯举行的年度消费电子展 (CES) 上展出。总部位于东京的 TDK 公司是智能社会电子解决方案的全球领导者之一,正在拥抱人工智能的崛起。预计未来十年该领域将快速增长,因此该公司正在制定创新和业务战略,以充分利用人工智能的潜力。TDK 还强调绿色转型和持续数字化是塑造其未来重点的关键全球趋势。在拉斯维加斯会议中心中央大厅的 15815 号展位上,TDK 展示了其新制定的长期愿景“TDK 转型:加速转型,实现可持续未来”。通过其创新产品,TDK 致力于推动技术进步并促进有意义的社会转型。为了实现这一目标,TDK 不断突破创新的界限,专注于先进材料、尖端制造工艺以及提高客户应用中的产品性能。人工智能已经改变了日常生活的许多方面,并将继续影响行业、自动化和技术。TDK 的解决方案旨在解决人工智能应用面临的关键挑战,例如高功耗,从而实现更高效和更广泛的使用。通过结合传感器融合、先进组件、软件和人工智能,TDK 能够推动创新并改变其主要市场,包括汽车、工业和能源以及 ICT。关键行业的变革性解决方案 ● 汽车:TDK 为电动汽车和高级驾驶辅助系统 (ADAS) 提供广泛的尖端解决方案组合。该公司的全面展示展示了其全系列的组件和传感器技术,特别强调了其 6 轴 IMU 和压电 MEMS 镜技术。 ● 工业和能源:TDK 的集成方法结合了人工智能、传感器融合和先进组件,以推动环境可持续性发展并应对关键的工业挑战,优化能源效率,提高生产力并促进可持续实践。值得关注的创新包括其柔性薄膜压电传感器解决方案和超声波飞行时间传感器。● ICT:TDK 将展示旨在实现更智能、更可靠、更环保的通信系统的解决方案,包括先进的高精度定位传感器和用于直接视网膜投影的超紧凑全彩激光模块,这些技术有望彻底改变增强和虚拟现实体验。
本文介绍了一种新型,可调且高效的金属 - 绝缘体 - 金属(MIM)等离子体设备的设计和数值研究,专为近红外(NIR)应用而设计。该设备在MIM波导中策略性地放置了策略性的存根谐振器。我们引入了两个小扰动,一个三角形和一个矩形,以实现出色的功能多功能性。采用有限元方法(FEM)并通过传输线方法(TLM)验证的综合数值分析证明了这两种方法之间的工作原理和出色的一致性。我们的模拟驱动方法,uti液化了遗传算法(GA)进行加速优化,对于通过纯粹的实验方法实现性能水平很难或昂贵,至关重要。GA启用了庞大的参数空间的有效探索,设备配置的迭代细化以及几何特征的微调。这种细致的优化使我们能够控制模拟结构中的复杂相互作用。提出的设备基于调整后的几何参数提供不同的功能,包括:A。平坦的带通滤波:在420 nm×540 nm的紧凑型足迹中,达到最大传输效率为95.8%。B.双波段带通滤波:在稍大的450 nm×540 nm尺寸的情况下,保持高传输效率为88.4%。C.三波段缺口滤波:在特定的共振波长中显示最小传输(低于1%),以进行靶向信号抑制。D.等离子体诱导的透明度(PIT)效应:在各种光学功能中提供潜在的应用。和E.完美的吸收:达到99.62%的最大吸收效率,为有效的光收集和操纵铺平了道路。这种多功能等离子设备的紧凑性,可调性和不同的NIR功能性的结合。它对小型化的光学组件,集成光子电路和高级光 - 物质相互作用有希望。我们的发现对紧凑,高效且易于制造的光子技术的发展产生了重大贡献。
实现多功能集成光子平台是未来光信息处理的目标之一,由于多种集成挑战,实现该平台通常需要很大的尺寸。在这里,我们基于逆向设计实现了一个超紧凑占用空间的多功能集成光子平台。该光子平台紧凑,具有86个逆向设计的固定耦合器和91个移相器。每个耦合器的占用空间为4μm x 2μm,而整个光子平台为3mm x 0.2mm,比以前的设计小一个数量级。一维Floquet Su-Schrieffer-Heeger模型和Aubry-André-Harper模型的测得保真度分别为97.90(±0.52)%和99.34(±0.44)%。我们还使用片上训练演示了手写数字分类任务,测试准确率为87%。此外,通过演示更复杂的计算任务证明了该平台的可扩展性,为实现超小型集成光子平台提供了有效的方法。
为了解决这些局限性,在这里,我们进行了高吞吐量筛选,以发现人,病毒和古细菌蛋白质组之间的新型转录调节剂,并在多种内源性人类环境中表征其功能。我们使用不同的DCAS系统中的病毒蛋白质组中识别出具有特殊鲁棒性的紧凑,有效的活化剂,其在各种细胞类型中具有出色的鲁棒性。从预测的三维结构和机器学习模型中获得的见解使我们能够在效力和持久性方面合理地改善激活剂。值得注意的是,工程活化剂在短暂递送后实现了有丝分裂耐用的基因激活。
CRISPR-Cas9、-Cas12a、-Cas12b 和 -Cas13 已被用于人类和植物细胞的基因组工程(Liu et al., 2022)。然而,这些 Cas 蛋白的尺寸较大(例如 SpCas9 为 190 kDa),难以通过病毒载体递送到细胞中。开发更小的 Cas 蛋白将导致病毒载体尺寸减小,从而可以在多功能基因组工程系统中更广泛地采用。最近,在巨型噬菌体中发现了 CRISPR-Cas12j2 (Cas F) 系统,由于 Cas12j2 的尺寸较小(80 kDa),该系统发展成为超紧凑基因组编辑器(Pausch et al., 2020)。不幸的是,使用核糖核蛋白传递的拟南芥原生质体中 Cas12j2 的基因编辑效率不到百分之一(Pausch 等人,2020 年)。如果植物科学界要采用 CRISPR-Cas12j2 介导的植物基因组编辑,显然需要进一步优化该系统。
©2022作者。本文根据创意共享4.0国际许可,允许以任何中等或格式的使用,共享,适应,分发和复制,因为您将适当的信用归功于原始作者和这些作者,并提供了与创意共享许可证的链接,并指出了IFCHANGES的链接。本文章中的图像或其他第三方材料包含在文章的Creative Commons许可中,除非在材料的信用额度中另有指示。如果本文的创意共享许可中不包含材料,并且您的预期使用不受法定法规的允许或超过允许的使用权,则您需要直接从版权所有的人获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
在本文中,我们详细分析了变分量子相位估计 (VQPE),这是一种基于实时演化的基态和激发态估计方法,可在近期硬件上实现。我们推导出该方法的理论基础,并证明它提供了迄今为止最紧凑的变分展开之一,可用于解决强关联汉密尔顿量。VQPE 的核心是一组具有简单几何解释的方程,它们为时间演化网格提供了条件,以便将特征态从时间演化的扩展状态集中分离出来,并将该方法与经典的滤波器对角化算法联系起来。此外,我们引入了所谓的 VQPE 的酉公式,其中需要测量的矩阵元素数量与扩展状态的数量成线性比例,并且我们提供了噪声影响的分析,这大大改善了之前的考虑。酉公式可以直接与迭代相位估计进行比较。我们的结果标志着 VQPE 是一种自然且高效的量子算法,可用于计算一般多体系统的基态和激发态。我们展示了用于横向场 Ising 模型的 VQPE 硬件实现。此外,我们在强相关性的典型示例(SVP 基组中的 Cr 2)上展示了其威力,并表明只需约 50 个时间步就可以达到化学精度。
接到法国军备总局 (DGA) 的通知,泰雷兹公司正与空中客车直升机公司合作开展将 AirMaster C 集成到 Guépard 直升机上的前期研究。这是未来的轻型联合陆军直升机,将为法国三支军队执行各种任务。“我们很自豪地推出泰雷兹机载监视雷达系列的最新成员 AirMaster C,它满足当前和未来的所有作战要求。凭借这款新产品,泰雷兹公司为更广泛的平台类型和运营商提供了优化的监视解决方案,确保他们在面对未来新挑战时受益于最高水平的任务性能。” 泰雷兹公司情报、监视和侦察 (ISR) 副总裁 Hervé Hamy 说道。
对含水量极高的食物垃圾进行碳化和造粒的成功,这在以前是没有开发过的,导致了环境部项目中这项研究成果的发展,以及在这项研究成果开辟了不仅应用于灾区,而且广泛应用于世界各地民用领域的可能性。 另一方面,即使产生的气体含有微量焦油,约1至2g/Nm 3 ,在运行约50小时后,焦油沉积在各种装置上的问题变得明显,这是从未报道过的。气化炉连续运行100小时后首次变得清晰。此外,还首次发现硬质合金球团成型时添加的粘结剂会导致球团气化时焦油生成量增加。今后,我们将明确设备长期稳定运行的对策和问题。完成了。这可以说是一个为未来研发提供指导的重大成果,是短期设备运行所无法看到的。 1.4 研究成果,如论文、专利、会议报告等。该研究成果发表在《Applied Energy》杂志上两篇文章(影响因子=7.182)、《Fuel》杂志上两篇文章(影响因子=4.601)和《Energy》 & Fuels杂志(影响因子=4.601)在著名英文期刊上共发表学术论文5篇,其中影响因子=3.091)。 此外,被聘为博士后的陆丁先生在任职期间发表了三篇学术论文,如今转行其他工作,他仍在根据这项研究成果撰写学术论文,并且参与这项研究项目对年轻研究人员的发展做出了巨大贡献。 此外,作为这项研究的结果,我们已经提交了一项专利申请,如附件 3 所示。