(3) 在任何起落架和襟翼位置,以 1·2 V S1 的直线、稳定滑行,以及在功率条件达到最大连续功率的 50% 时,副翼和方向舵控制运动和力必须随着滑行角增加到适合飞机类型的最大值而稳定增加(但不一定按恒定比例增加)。在较大的滑行角下,直到使用全舵或副翼控制或获得 JAR-VLA 143 中包含的控制力极限的角度,方向舵踏板力不得反转。滑行必须伴随足够的倾斜度以保持恒定的航向。快速进入最大滑行或从最大滑行恢复不得导致无法控制的飞行特性。
ULISSES 地面站提供以下功能:• 通过 USB 准备 ULISSES 目标库以加载到机载 ULISSES 声学处理器中 • 将按照 Stanag 4283 格式化的原始 Sonobuoy 数据从 ULISSES 可移动磁盘导入地面站。地面站允许实时处理(快速时间分析)记录的 Sonobuoy 数据 • 为操作员提供一组目标库功能,以改进目标识别和分类过程。
这种目的冲突可能在 25 年前就出现了,当时,CAA 最初根据 CAP 553 BCAR A 节“CAA 对产品型号核准负有主要责任的适航程序”第 A8-15 章不超过 2730 公斤的飞机和旋翼机 - 维护组织 - M3 组,批准 BMAA 作为维护组织监督超轻型飞机的持续适航性。
这是以下文章的同行评审版本:Chen, S., Hou, K., Li, T., Wu, X., Wang, Z., Wei, L. & Leong, W. L. (2022)。用于皮肤生物电子学的超轻、高渗透性和防水纤维有机电化学晶体管。Advanced Materials Technologies,最终版本已发布于 https://doi.org/10.1002/admt.202200611。本文可根据 Wiley 自存档版本使用条款和条件用于非商业用途。
超轻型飞机航空摄影的实际经验表明,由于载体重量轻,摄影飞行剥离很复杂。为了克服这个问题,必须在等高线较差的地形上建造人工地面目标。另一方面,使用导航卫星系统可以解决获得高质量航空摄影的问题。在这方面,建议的下一步是为超轻型飞机配备大地测量卫星系统,以确定照片投影中心的坐标。然而,需要深入研究超轻型飞机驾驶时的飞行坡度对卫星信号接收稳定性和导航系统定位精度的影响。
超轻型飞机航空摄影的实际经验表明,由于载体重量轻,摄影飞行剥离很复杂。为了克服这个问题,必须在等高线较差的地形上建造人工地面目标。另一方面,使用导航卫星系统可以解决获得高质量航空摄影的问题。在这方面,建议的下一步是为超轻型飞机配备大地测量卫星系统,以确定照片投影中心的坐标。然而,需要深入研究超轻型飞机驾驶时的飞行坡度对卫星信号接收稳定性和导航系统定位精度的影响。
超轻型飞机航空摄影的实际经验表明,由于载体重量轻,摄影飞行剥离很复杂。为了克服这个问题,必须在等高线较差的地形上建造人工地面目标。另一方面,使用导航卫星系统可以解决获得高质量航空摄影的问题。在这方面,建议的下一步是为超轻型飞机配备大地测量卫星系统,以确定照片投影中心的坐标。然而,需要深入研究超轻型飞机驾驶时的飞行坡度对卫星信号接收稳定性和导航系统定位精度的影响。
在使用超轻型飞机进行航空摄影的实践经验表明,由于载体重量轻,摄影飞行剥离很复杂。为了克服这个问题,在地形不等高的情况下,必须建造人工地面目标。另一方面,获得高质量的航空摄影的问题可以通过使用导航卫星系统来解决。在这方面,建议的下一步是为超轻型飞机配备大地测量卫星系统,以确定照片投影中心的坐标。然而,需要深入研究超轻型飞机驾驶时的飞行坡度对卫星信号接收稳定性和导航系统定位精度的影响。