细胞在细胞外环境中释放各种类型的膜囊泡。这些称为细胞外囊泡(EV),包括外泌体和微泡。外泌体是相对较小的细胞外膜囊泡(30-150 nm),并通过转移生物分子(例如核酸,蛋白质,酶和脂质)在细胞之间转移了一种重要的细胞对细胞通信方式。此外,它们可以用作各种疾病的生物标志物,还被研究为下一代治疗剂的天然药物输送车系统。在这里,我们通过高速和超速离心的组合描述了从脂肪来源的干细胞中的小细胞外囊泡(EV)的快速隔离过程。将细胞培养在Bioblu®0.3C单使用生物反应器中,并由DASBOX®迷你生物反应器系统控制。DASBOX迷你生物反应器系统允许大量干细胞培养,因此高产量
在不同LDL亚型中,sdLDL可能比其他亚型更能成为ASCVD风险的生物标志物。9,10据报道,sdLDL与多种疾病有关,包括代谢紊乱、肥胖和2型糖尿病,并被认为是冠心病的危险因素。11-13因此,测定sdLDL-C水平对监测ASCVD风险具有重要意义。传统的sdLDL-C测定方法依赖于复杂的超速离心或梯度凝胶电泳,14测定所需的特殊设备和较长的测定时间限制了sdLDL测定的临床应用。Sampson等人根据标准血脂组的结果,建立了一个新的估算sdLDL-C的方程,判定系数为0.745,15但其公式只在美国人群中建立,在其他人群中的适应性和估算效果尚不明确。
1981年,Trams等。 通过透射电子显微镜发现了一组直径为40-1000 nm的囊泡样结构[1]。 后来,Johnstone等。 在网状细胞成熟过程中鉴定出类似囊泡样的结构,并通过以100,000×g的超速离心为90分钟将这些膜结合的囊泡从绵羊网状细胞中分离出来。 首次将这些囊泡样结构命名为外泌体[2,3]。 但是,当时,外泌体的发现并没有得到太多的关注,因为这些囊泡被认为仅仅是从成熟的红细胞中浪费的产物。 这些囊泡直到最近才被表征为膜结合的细胞外囊泡,在细胞膜与细胞内多囊体(MVBS)融合后通过胞吞作用释放出来[4,5]。 外泌体现在在所有体液和组织中都广泛发现,包括血液[6],尿液[7],母乳[8],羊膜/滑膜/腹水液[9],唾液[10]和脂肪组织[11]。 越来越多的类型的1981年,Trams等。通过透射电子显微镜发现了一组直径为40-1000 nm的囊泡样结构[1]。后来,Johnstone等。在网状细胞成熟过程中鉴定出类似囊泡样的结构,并通过以100,000×g的超速离心为90分钟将这些膜结合的囊泡从绵羊网状细胞中分离出来。首次将这些囊泡样结构命名为外泌体[2,3]。但是,当时,外泌体的发现并没有得到太多的关注,因为这些囊泡被认为仅仅是从成熟的红细胞中浪费的产物。这些囊泡直到最近才被表征为膜结合的细胞外囊泡,在细胞膜与细胞内多囊体(MVBS)融合后通过胞吞作用释放出来[4,5]。外泌体现在在所有体液和组织中都广泛发现,包括血液[6],尿液[7],母乳[8],羊膜/滑膜/腹水液[9],唾液[10]和脂肪组织[11]。越来越多的类型的
在Chi等人发表的文章中,将MERS-COV S1亚基的序列注入了人CD4的跨膜结构域(TM)和RABV G蛋白的细胞质结构域(CD)。将单个转录单元插入RABV(SRV9菌株)cDNA克隆中,用于营救嵌合RABV,RSRV9-MERS S1,将融合片段S1 -TM-CD插入了RABV(SRV9菌株)cDNA克隆。透射电子显微镜表明,使用反向遗传学成功救出了活病毒。间接免疫荧光测定法证明了S1亚基被表达并转运到细胞表面。随后,收集了RSRV9 -MERS S1库存,被B-丙二醇酮灭活,然后在不连续的蔗糖梯度上通过超速离心纯化。进一步,Chi等。使用三种不同的动物进行体内测试:小鼠,骆驼和羊驼。小鼠的测试表明
目的:作者研究展示一种以上的归巢肽是否能增强外泌体的肿瘤靶向效率。材料和方法:人类胚胎肾细胞 (HEK293F) 的外泌体被改造成展示单或双肿瘤穿透肽 iRGD 和 tLyp1。外泌体通过切向流过滤纯化,然后进行超速离心。结果:当装载阿霉素 (Dox) 时,双 iRGD-tLyp1 外泌体大大增强了 MCF-7 和 MDA-MB-231 乳腺癌细胞系对 Dox 的吸收,优于单 iRGD 或 tLyp1 外泌体。双 iRGD-tLyp1 外泌体 Dox 也是最有效的,IC 50 / GI 50 值比游离 Dox 和其他外泌体 Dox 低 3.7-17.0 倍。结论:选择合适的组合归巢肽可以成为未来精准纳米医学的一种方法。
摘要 外泌体是纳米级的细胞外囊泡,在细胞间通讯中起着重要作用,携带可影响生理和病理过程的蛋白质、脂质和 RNA 等生物分子。纯外泌体的分离对于基础研究和临床应用(包括诊断和治疗)都至关重要。传统的外泌体分离技术(例如超速离心)缺乏特异性并且可能产生不纯的样品,因此显然需要先进的分离技术。基于配体的外泌体亲和纯化 (LEAP) 柱层析是一种利用针对外泌体表面标志物的特定配体的新方法,为外泌体分离提供了一种高度特异性、温和且可扩展的方法。这篇小型综述探讨了 LEAP 层析的机制、优点和临床应用潜力,强调了其在基于外泌体的诊断和治疗中日益增长的重要性。
我们的实验室试图了解大分子的3D结构与其功能有关。核糖体,尤其是真核细胞中的细胞断核糖体,是我们最喜欢的成像样品。细胞器核糖体由于根据内共生理论与细菌细胞的历史联系,与整体形态中的细菌核糖体相似,但是一旦在高分辨率下确定结构,就很容易观察到蛋白质和rRNA成分的添加和缺失。这些修饰源于在真核细胞环境中的演变过程中适应的必要性。我们想以高分辨率推断细胞器核糖体结构,以便我们可以高精度地推断出这些变化的结构和定位。我们的管道将涉及蔗糖密度梯度超速离心对细胞器核糖体的天然源纯化,通过冷冻EM进行成像和图像处理,以生成此类核糖体不同构象状态的结构。这项工作的随后扩展将是图像各种翻译因子以及核糖体的相互作用的结构和模式。总的来说,我们希望生成有关真核细胞内细胞器环境中翻译机制和翻译调节的重要数据。
乳酸杆菌衍生的外泌体是由细菌释放的细胞外小囊泡,近年来已成为一个有前途的研究领域。这些外泌体具有独特的结构和功能多样性,使其能够调节免疫反应并促进肠道健康。这些外泌体的分离和纯化对于其作为治疗剂的有效使用至关重要。已经开发了几种分离和纯化方法,包括差速超速离心、密度梯度离心和尺寸排阻色谱法。乳酸杆菌衍生的外泌体已被证明对各种疾病具有治疗潜力,例如炎症性肠病、肝病和神经系统疾病。此外,它们已被证明可作为药物输送的有效载体。这些外泌体的基因工程也显示出增强其治疗潜力的前景。总体而言,乳酸杆菌衍生的外泌体代表了一个有前途的研究领域,可用于开发用于免疫调节、肠道健康和药物输送的新型疗法。
DNA以负层面环的循环组织。所得的扭转和弯曲应变使DNA能够采用出人意料的3D形状。负超串联,循环和形状影响DNA之间的这种相互作用是如何存储,复制,转录,修复以及可能其他所有其他方面的DNA活性。为了理解负超串联和曲率对DNA的流体动力特性的后果,我们将336 bp和672 bp dna微圈提交给了分析性超速离心(AUC)。我们发现,分支系数,沉积系数和DNA水动力半径很大程度上取决于圆形,环长度和负超涂层的程度。由于AUC无法确定超出非全球性程度的形状,因此我们应用线性弹性理论来预测DNA形状,并将它们与流体动力计算相结合以解释AUC数据,并与理论与实验之间的合理一致。这些互补方法以及早期的电子冷冻学数据,提供了一个框架,以理解和预测超螺旋对DNA的形状和流体动力特性的影响。