先前的实验提供了分别在二维材料中滑动铁电性和光激发层间剪切位移的证据。在这里,我们发现通过激光照明,在H -BN双层中令人惊讶的0.5 ps中可以实现垂直铁电的完全逆转。综合分析表明,铁电偏振转换源自激光诱导的层间滑动,这是由多个声子的选择性激发触发的。从上层n原子的P z轨道到下层B原子的P z轨道的层间电子激发产生所需的方向性层间力,激活了平面内光学TOTO TOTO TOS TOTO to-1和LO-1声音声模式。由TO-1和LO-1模式的耦合驱动的原子运动与铁电软模式相干,从而调节了动态势能表面并导致超快铁电偏振反转。我们的工作为滑动铁电的超快偏振转换提供了一种新颖的微观见解。
近年来,随着新兴国家工业化进程加快、经济发展迅速,矿产资源需求不断增加,矿产资源可持续供给危机感不断增强,资源民族主义思潮回潮。引发资源供给结构变化,正处于重大变革时期。随着陆地资源日益枯竭,深海资源的勘探和采集研究正在快速进展。在日本的专属经济区和大陆架,已发现许多深海矿产资源潜力区,如含有金属和稀有元素的黑子型海底热液矿床、富钴结壳等。据估计,日本拥有世界最大的黑子型海底热液矿床潜在资源量,拥有仅次于美国的世界第二大富钴结壳潜在资源量。然而,如何将潜在有前景的海域缩小到具有资源吸引力的海域,这一方法尚未完全确立。此外,由于深海海底采矿技术刚刚起步,矿藏的勘探和开采活动仍处于起步阶段。因此,需要开发新的勘探技术并开发有效的采矿技术。此外,作为世界第三大经济体,日本强劲的工业活动和丰富的生活方式得益于其丰富的能源和资源储备,包括石油、天然气、铜和镍。换句话说,日本是世界上最大的能源和资源消费国之一。然而,日本自身的能源和资源并不多,目前大部分依赖从其他国家进口。此外,近年来,在亚洲经济高速增长的背景下,全球对这些资源和能源的需求急剧增加,日本确保稳定供应的难度加大。尤其是日本的石油、天然气、铜、镍等矿产资源几乎100%依赖海外,因此,海外资源竞争加剧、产地冲突、甚至经济形势的变化,供需环境的变化引起需求波动,使得资源价格长期呈上涨趋势,为资源价格波动创造了条件。随着人口向城市集中、老龄化导致的生活方式改变等原因,电气化不断推进,能源需求不断扩大,确保能源和资源对于改善人们的生活至关重要。因此,开发自己的海洋资源对日本来说极其重要。但对深海采矿车辆的实时监控研究较少,导致高效深海采矿变得困难。常规深海探测方法包括大地测量卫星遥感技术、船载声纳技术、自主水下机器人(AUV)巡航成像技术等,但这些方法难以实现实时探测,且存在易被篡改等问题。受环境影响较大,准确率较低。可见光成像系统的引入对于准确定位广阔海底的资源并有效收集至关重要。为此,我们开展了研究,利用先进的人工智能技术来克服这些问题。
硅是一种用于低温热能清除应用的丰富元素热电材料,通常患有相当低的热电效率。提高效率的一种可行解决方案是提高非硅硅(A-SI)的功率因数(PF),同时保持热导率足够低。在这项工作中,我们报告说,Pf> 1 m wm-1 K-2是可用于硼植入的p型P型A-SI膜,该膜分散,通过在温度≤600°C的温度下通过退火而实现的超细晶体。在550°C下退火可启动用嵌入A-SI基质中的亚纳米晶体结晶。所得的薄膜保持高电阻,因此产生了低的PF。在600°C下的退火大约使以双峰尺寸分布特征的特征降低了亚5-nm纳米晶体的密度,并因此减少了膜中无定形相的分数。因此,在室温下测得的PF> 1 m wm -1 k - 2急剧增强的电导率,因此Pf> 1 m wm -1 k -2。结果表明,在大型热电应用中,硅具有巨大的潜力,并基于硅热电话建立了通往高性能能量收集和冷却的途径。
1北京邮政与电信大学科学学院信息光子学和光学通信的关键实验室,中国北京100876。电子邮件:bike@bupt.edu.cn 2国家主要实验室新陶瓷和精细处理,材料科学与工程学院,北京大学,北京大学,北京100084,电子邮件:wxh@tsinghua.edu.edu.cn.cn 3 3 3 3 3 3应用和应用数学部门sb2896@columbia.edu 4浓缩物理和材料科学系,布鲁克黑文国家实验室,纽约州阿普顿市11973 5北京国家冷凝物质物理学实验室,物理学研究所,中国学院科学研究所,贝吉利亚学院,北京100190,中国电子补充信息(ESI)。参见doi:10.1039/x0xx00000x
Shib Shankar Banerjee 1,#、Subhradeep Mandal 1、Injamamul Arief 1、Ramakanta Layek 2、Anik Kumar Ghosh 1、Ke Yang 3、Jayant Kumar 3、Petr Formanek 1、Andreas Fery 1、Gert Heinrich 1,4、Amit Das 1,5 * 1 德累斯顿莱布尼茨聚合物研究所 e。 V,Hohe Straße 6,德累斯顿,01069,德国 2 LUT 大学,拉赫蒂,Mukkulankatu 19,FI-15210,芬兰 3 马萨诸塞大学洛厄尔分校,先进材料中心,物理系,MA 01854,美国 4 德累斯顿工业大学,纺织机械和高性能材料技术研究所,Hohe Straße 6,德累斯顿,01069,德国 5 坦佩雷大学,工程与自然科学系,FI-33101,芬兰
ICR Consilium Chris Gardner, David Daley, Lindsey Neville Tel: +44 (0) 20 3709 5700 Email: arecor@consilium-comms.com Notes to Editors About Arecor Arecor Therapeutics plc is a globally focused biopharmaceutical company transforming patient care by bringing innovative medicines to market through the enhancement of existing therapeutic products.通过应用我们创新的专有技术平台Arestat™,我们正在开发糖尿病和其他指示中专有产品的内部投资组合,并与领先的药品和生物技术公司合作以提供治疗产品。Arestat™平台由广泛的专利组合支持。有关更多详细信息,请访问我们的网站www.arecor.com
卫星现在通常用于测量水和陆地表面的反射,因此与环境相关的参数,例如水生叶绿素浓度和陆地植被指数。对于每个卫星任务,对于所有光谱带的大气底部都需要放射线验证,并涵盖将使用卫星数据的所有典型条件。现有的网络,例如水和陆地的Radcalnet等现有网络提供了至关重要的验证信息,但是(Aeronet-OC)不涵盖所有光谱带或(Radcalnet)不涵盖所有表面类型和查看角度。在这篇文章中,我们讨论了光辐射测定法中仪器,测量方法和不确定性估计的最新进展,并提出了以下观点,即需要一个新的自动化高光谱辐射仪网络来进行多损新的水和陆地表面反射率的多效率辐射验证。描述了联合网络概念的超网络,为网络特定方面的研究论文提供了背景。该网络在其对土地和水面的共同方法方面都是独一无二的。解释了土地和水测量之间的共同方面和差异。基于对面向验证的研讨会的HyperNET数据的早期热情,我们认为,这种新的自动高光谱辐射仪网络将有助于对水和多角度的多端辐射验证和多角度土地表面反射的反射。HyperNet网络与其他测量网络具有很强的协同作用(Aeronet,