本文探讨了阻碍高超音速技术发展的主要挑战,重点是热管理,推进系统和可操作性。超音速技术(定义为超过5马赫的飞行)为军事和商业航空的进步提供了重要的机会。尽管五十多年的发展和不断增长的投资,尤其是五角大楼的2025年预算要求(69亿美元)强调了高超音速技术的广泛采用仍然不完整。在超声速度下产生的极端热量需要先进的材料和冷却系统,以维持结构完整性并保护关键组件。此外,开发合适的推进系统,例如Ramjets和Scramjets,对于实现和维持高超音速速度至关重要,但是这些系统目前在效率和应用方面面临限制。最后,本文讨论了与超声飞行相关的可操作性约束和雷达检测问题,这构成了重大的操作挑战。正在进行的国际竞争,特别是与俄罗斯和中国的竞争,强调了克服这些挑战以推进高超音速技术的战略重要性。调查结果表明,尽管已经取得了重大进展,但进一步的研发对于在军事和商业环境中都充分发挥了高超音速技术的潜力至关重要。
美国国家航空航天局及其前身国家航空咨询委员会 (NACA) 自 1920 年以来一直致力于开发超音速巡航飞行所需的技术。前期工作主要集中在开发基本的测试设施和方法,以便研究超音速问题。与此同时,还开展了研究,以确定超音速飞行的飞机和推进概念。这些早期研究促进了美国空军/海军/贝尔 XS-1 联合飞机的开发,该飞机于 1947 年由空军上尉查尔斯·E·“查克”·耶格尔驾驶,成功完成了首次超音速飞行。1956 年至 1971 年间,美国空军超音速 B-70 和商用超音速运输概念得到了强有力的研究支持。由于技术和政治问题,这两个项目均未生产出飞机,NASA 被赋予了为可行的超音速巡航飞机建立技术基础的责任。后一项努力被称为 NASA 超音速巡航研究 (SCR) 计划,于 1971 年至 1981 年间进行。NASA 可变循环发动机 (VCE) 计划是 SCR 的一个推进分支,于 1976 年至 1981 年间进行。SCR 计划对于 NASA 涉及内部和承包商参与的计划来说有些不寻常。几家制造商提供了公司人力和资金来增强 NASA
对以超音速速度飞行的商用和民用飞机的潜在发展产生了新的兴趣。噪声和排放影响首先在1970年代进行了广泛的研究,然后在1990年代和2000年代初期再次进行了研究。因此,有必要详细介绍我们对噪声的潜在影响以及与排放有关的环境问题的理解,尤其是对臭氧和气候的影响。正在考虑使用常规燃料的不同尺寸飞机的超音速运输(SST)机队,从业务飞机延伸到可以运输数百名乘客的较大飞机。科学家现在正在使用全球大气化学和物理学的最先进模型进行新的研究,以了解对平流层臭氧的潜在影响以及与SST机队相关的气候的辐射强迫。这些研究为超音速飞机潜在环境影响的下一代分析奠定了基础,这些分析获得了开发的考虑。以及长寿命二氧化碳(CO 2)的排放,气候的辐射强迫又取决于水蒸气浓度(H 2 O),臭氧(O 3),甲烷(CH 4)的空间变化气溶胶)。飞机舰队的排放尤其取决于车队的尺寸,飞行特性,马赫速度,巡航高度,巡航时的舰队燃料使用,无X排放指数以及有关燃料和烟灰排放中硫的假设。f或目前正在评估SST车队的飞机数量和类型的投影,在未来2 - 3年中,全球平均总臭氧的变化可能会少于1%,而根据特定的车队参数,这种变化是正面还是负数。气候效应也可能很小,导致全球平均表面温度的变化通常要小得多(总效应也取决于是否使用了可持续航空燃料)。已经取得了重大进展,以建模并减轻超音速飞行中声音繁荣的影响。正在进行的研究以评估对公众的影响的研究表明,未来的低吊杆超音速飞机设计将创造出比传统的声音繁荣不那么烦人的更安静的声音“重击”。尽管如此,对于完全评估特定飞机的噪声效应是必要的进一步研究。
ATLLAS 高速飞行轻型先进材料的气动和热载荷相互作用 ATLLAS II 轻型先进结构上的气动热力学载荷 II BLOX4 第四激光氧化分析设备 C/C-SiC 碳纤维增强碳化硅复合材料 CMC 陶瓷基复合材料 CTE 热膨胀系数(以 10 -6 °C -1 为单位) CVI 化学气相渗透 DGA 军备总局 DLR 德国空气和空间飞行中心 EDM 电火花加工 EDS 能量色散光谱 ESA-ESTEC 欧洲空间局 - 欧洲空间研究与技术中心 FAST 场辅助烧结技术 HP 热压 PCS 聚碳硅烷(SiC 前体) PIP 前体渗透和热解 PyC 热解碳 RMI 反应熔融渗透 SEM 扫描电子显微镜 SI 浆料渗透 SIP 浆料渗透和热解 SPS 放电等离子烧结 TT 热处理 UHTC 超高温陶瓷 UHTCMC 超高温陶瓷基复合材料 WC 碳化钨 ρ 密度(单位:g/cm 3 ) σ f 弯曲强度(单位:MPa) ε f 弯曲应变(单位:%) d 50 中值粒度(单位:µm) E 杨氏模量(单位:GPa) E f 弯曲模量(单位:GPa) K 1C 断裂韧性(单位:MPa.m 1/2 ) H v 硬度(单位:GPa)
将高超音速技术扩展到大批量生产对美国国防部 (DoD) 提出了重大挑战。高超音速系统非常复杂,由最先进的材料组成,并且依赖于错综复杂的供应链。为了保持和扩大美国相对于外国对手的技术优势,必须采用突破性的制造解决方案来缓解这些问题。金属增材制造 (AM),特别是激光粉末床熔合 (LPBF),提供了一种变革性方法来应对这些挑战,它可最大限度地降低成本和交货时间、降低复杂性、利用先进材料并简化供应链。
1978 年《监察长法》(5 U.S.C.)§§ 401-424(经修订)授权我们及时接触我们认为必要的人员和材料,以进行监督。您可以从国防部指令 5106.01“国防部监察长(IG DoD)”(2012 年 4 月 20 日,经修订)和国防部指令 7050.03“国防部监察长办公室访问记录和信息”(2013 年 3 月 22 日,经修订)中获取有关国防部监察长办公室的信息。我们的网站是 www.dodig.mil。
传输层 SDA 表示,PWSA 的传输层旨在将跟踪层连接到地面的拦截器和其他武器系统,将“增强包括导弹防御在内的多个任务领域”。据国防部称,SDA 已经授予传输层第 1 部分和第 2 部分的原型协议。传输层最终将由大约 300-500 颗卫星组成。SDA 申请在 2025 财年为“数据传输层、传感器功能以及备用位置、导航和计时功能”拨款 14 亿美元。拦截器 MDA 探索了消灭敌方高超音速武器的方案,包括拦截导弹、超高速射弹、定向能武器和电子攻击系统。2020 年 1 月,MDA 发布了一份高超音速防御区域滑翔相武器系统拦截器的原型提案请求草案。该计划旨在“降低拦截器关键技术和集成风险”。 2021 年 4 月,MDA 转向滑翔段拦截器 (GPI),该拦截器将与宙斯盾武器系统集成。尽管 GPI 名义上将在 2034 财年提供高超音速导弹防御能力,但 2024 财年国防授权法案 (PL 118-31) 第 1666 节要求国防部在 2029 年 12 月 31 日之前实现该项目的初始作战能力,并在 2032 年 12 月 31 日之前实现全面作战能力。洛克希德马丁公司、诺斯罗普格鲁曼公司和雷神导弹与防御公司已获得 GPI “加速概念设计”阶段的合同。2024 年 5 月,国防部与日本签署了合作开发 GPI 的正式协议。
地热井是任何地热发电设施中的关键组成部分和大多数资本密集型部分。但是,他们经常在一生中经历压力下降,在某些情况下导致井压力低于发电厂的运营条件,这使得井无法使用发电。这可以使整个项目更加昂贵,因为必须钻出其他井来补偿不可用的蒸汽以维持所需的电厂输出。本研究探讨了使用弹出器来解决该问题的可能性。弹出器已用于石油和天然气和制冷行业的各种应用中。在地热发电中,喷射器被广泛用于从冷凝器中提取不可凝聚的气体。弹出器是使用高压流的动能来诱导低压流的流动的静态设备。超音速喷射器通过使用收敛性喷嘴将主要流体加速到超音速条件来起作用。这会产生一种压力,使二次流夹入,混合物在中间压力下退出。这项工作中描述的实验是在雷克雅未克大学能源实验室进行的,以在实验室规模上制造和测试超音速弹出器。是为了在不同的压力下连接两个饱和蒸汽流,并将结果与早期研究中开发的分析模型进行比较。该实验集中在喷射器尺寸对性能的影响上,特别是恒定面积混合部分(CAM)。该实验成功地证明了喷射器通过表现出受到压力和二次流的夹带而起作用,尽管与分析模型没有良好的匹配。从实验中,使用夹带比率的5 mM凸轮排出器提供了最佳的结果,达到了压力和出口压力以衡量其性能。分析模型还用于设计潜在的超音速喷射器,以连接肯尼亚奥尔卡里亚地热场的两个生产井。设计表明,可以使用此弹出器产生另外的2.2 MW电力。
伊朗萨布兹瓦里大学机械工程系,伊朗bzevar,伊朗B机械工程系,安东国立大学机械工程系汤姆斯克州立大学,634050,俄罗斯汤姆斯克,俄罗斯E电气与信息工程学院,天津大学,天津,田津,300072,中国,埃克塞特大学环境,科学与经济学院,埃克塞特大学,埃克塞特大学,EX4 4QF,EX4 4QF,UK G工程学,肯特大学,肯特大学,肯特大学,CT2 7nz,UK HERDING,UK HERDING,UK HENDING ERIGISS of ERDICT of DRIGND>伊朗萨布兹瓦里大学机械工程系,伊朗bzevar,伊朗B机械工程系,安东国立大学机械工程系汤姆斯克州立大学,634050,俄罗斯汤姆斯克,俄罗斯E电气与信息工程学院,天津大学,天津,田津,300072,中国,埃克塞特大学环境,科学与经济学院,埃克塞特大学,埃克塞特大学,EX4 4QF,EX4 4QF,UK G工程学,肯特大学,肯特大学,肯特大学,CT2 7nz,UK HERDING,UK HERDING,UK HENDING ERIGISS of ERDICT of DRIGND>伊朗萨布兹瓦里大学机械工程系,伊朗bzevar,伊朗B机械工程系,安东国立大学机械工程系汤姆斯克州立大学,634050,俄罗斯汤姆斯克,俄罗斯E电气与信息工程学院,天津大学,天津,田津,300072,中国,埃克塞特大学环境,科学与经济学院,埃克塞特大学,埃克塞特大学,EX4 4QF,EX4 4QF,UK G工程学,肯特大学,肯特大学,肯特大学,CT2 7nz,UK HERDING,UK HERDING,UK HENDING ERIGISS of ERDICT of DRIGND>伊朗萨布兹瓦里大学机械工程系,伊朗bzevar,伊朗B机械工程系,安东国立大学机械工程系汤姆斯克州立大学,634050,俄罗斯汤姆斯克,俄罗斯E电气与信息工程学院,天津大学,天津,田津,300072,中国,埃克塞特大学环境,科学与经济学院,埃克塞特大学,埃克塞特大学,EX4 4QF,EX4 4QF,UK G工程学,肯特大学,肯特大学,肯特大学,CT2 7nz,UK HERDING,UK HERDING,UK HENDING ERIGISS of ERDICT of DRIGND>
垃圾屏幕是由均匀间隔的杆或网格制成的结构,安装在涵洞或排水系统的入口处,以防止碎屑造成可能进一步下游并损坏关键资产(例如,泵站或管道)的堵塞(Benn等人。2019)。条间距通常设计为仅捕获可能造成损坏的碎片。如图1所示,一旦碎屑开始在多个条上桥接,然后开始逐步积累,阻塞水路并可能引起浮动事件(Blanc 2013; Benn等2019)。因此,清除被阻塞的垃圾屏幕是最重要的,尤其是在大雨的发作之前(Speight等人。2021)。实际上,这意味着地方当局需要制定更好的策略来清除这些资产。当前,这些垃圾屏幕是通过手动检查摄像机或常规时间表来维护的,但是在需要清除特定垃圾屏幕的情况下,这可能证明不具备。此外,虽然垃圾屏幕的阻塞可能会严重恶化流量事件(Streftaris et al。2013),据我们所知,这些信息从未被整合到投入预测系统。使用观察到的或建模的河流排放来为图中的排放提供信息(例如Hooker等人,2023)。因此,知道垃圾屏幕的位置和状态可以被认为是自动选择此类洪水淹没图的有价值信息。例如,模拟库可以包含根据不同垃圾屏幕阻塞方案计算的地图,并且根据垃圾屏幕状态的知识选择了正确的映射。