2024年4月15日,星期一,07:00 - 08:00自助早餐会议1 - UHTCS,UHTCMC和HE陶瓷的基本属性 - I 08:00 - 08:10简介,传播,传播,传播,08:10 - 08:35 University of Science and Technology, USA 08:35 – 08:55 Melting temperature and mechanical properties of tantalum carbonitrides Ta2CxNy Jérémie Manaud, European Commission / Joint Research Centre, Germany 08:55 – 09:15 In-situ high temperature characterization of the cBN to hBN transformation using the conical nozzle levitator Isabel Crystal, LLNL, USA 09:15 – 09:35双相高凝结硼碳酸盐超高温度陶瓷的发射和熔融温度 10:00 – 10:30 Coffee Break Session 2 – Processing, synthesis of new compounds and novel methods, and scale-up issues - I 10:30 – 10:55 Invited Synthesis of Ultrahigh Temperature materials using UHS and USP Ji-Cheng Zhao, University of Maryland, USA 10:55 – 11:15 Preceramic polymer grafted nanoparticles as a route to Ultra-High Temperature Ceramics Matthew Dickerson, US美国空军研究实验室,美国,11:15 - 11:35,基于Zrb2的材料的BinderJet添加剂Peter Kaczmarek,NSWC Carderock,美国11:35 - 12:00邀请二进制至Quarary Truntition Metal Diborides diborides Roberto roberto roberto roberto rorru',Cagliari University,Cagliari,Italiali necaliali nekalie noursialie noursial noursity noursity of Cagliari noursialiali necaliali necaliali necaliali
摘要:由光子晶体纤维(PCF)组成的表面等离子体共振(SPR)传感器设计用于检测低浓度的液体。出色的传感特性归因于表面等离子体偏振子(SPP)模式的分散点(DTP)的灵敏度增强。传感器由两个相同且结构上简单的D形PCF以及与分析物直接接触在抛光表面上的等离子薄膜组成。折射率(RI)的变化导致退化等离子体峰分裂,从而通过测量峰分离来监测分析物浓度变化。在1.328 RIU和1.33 RIU之间,传感器的超高灵敏度为129,800 nm/riU,比未敏化的单个D形结构高37.22倍。与在覆层模式DTP附近运行的纤维光栅传感器相比,剪接的双D形PCF仍然具有高度高的机械强度。此外,可以通过调节缝隙宽度来更改传感器的RI检测范围。在0g/l至100 g/l的氯化钠浓度范围内,平均敏感性为4.38 nm/g·l -1,在0g/l至20 g/l的血红蛋白浓度范围内,0g/L至100 g/l和20.85 nm/g·l -1。我们的结果表明,基于PCFS的SPR传感器在多种应用中具有较大潜力,尤其是生物化学,因为它具有出色的灵敏度,结构性的简单性和可调节的检测范围。
摘要:纳米尺寸的电池型材料应用于电化学电容器中,可以有效减少电导率低、体积变化大带来的一系列问题,但这种方式会导致充放电过程以电容行为为主,造成材料的比容量严重下降。通过控制材料颗粒为合适的尺寸以及合适的纳米片层数,可以保留电池型行为而维持较大的容量。本文在还原氧化石墨烯表面生长典型电池型材料Ni(OH)2,制备复合电极,通过控制镍源的用量,制备出合适Ni(OH)2纳米片尺寸和合适层数的复合材料,在保留电池型行为的情况下获得了高容量的电极材料,制备的电极在2 A g −1 时比容量为397.22 mA hg −1。当电流密度增加到20 A g − 1 后,保持率高达84%。制备的非对称电化学电容器在功率密度为1319.86 W kg − 1 时的能量密度为30.91 W h kg − 1,20 000次循环后保持率可达79%。我们主张通过增加纳米片的尺寸和层数来保留电极材料电池型行为的优化策略,这可以显著提高能量密度,同时结合电化学电容器的高倍率性能的优势。■ 介绍
摘要 —基于亚波长光栅跑道微环谐振器和游标效应,提出并论证了一种优化片上折射率传感器灵敏度和检测限的方法。亚波长光栅波导可以降低光场的结构限制,有利于增强光子与分析物之间的相互作用。通过优化亚波长光栅跑道微环谐振器的参数,传感器的灵敏度可以显著提高到 664 nm/RIU。随后,利用游标效应,设计了一种基于两级联微环的折射率传感器。由于游标效应,重叠峰之间的波长间隔可以有效放大十倍以上,从而获得高性能。结果表明,超高灵敏度为 7061 nm/RIU,检测下限为 1.74 × 10 −5 RIU。该集成装置具有超高灵敏度、低检测限等优点,在环境监测、生物传感器领域具有重要价值。
磁共振成像(MRI)是神经科学研究和神经系统疾病的临床诊断的众所周知且广泛的成像方式,主要是由于其能够可视化脑微观质量并量化各种代谢物。此外,它的无创性使从体内脑样本与组织学的高分辨率MRI与组织学的相关性有可能,从而支持了神经退行性疾病的研究,例如阿尔茨海默氏病或帕金森氏病。但是,离体MRI的质量和分辨率高度取决于具有最大化填充因子的专业射频线圈的可用性,用于研究样品的不同大小和形状。例如,在超高田中全身MRI扫描仪中并不总是在商业上可用的小型,专用的射频(RF)线圈。即使对于超高场临床前扫描仪,特异性RF线圈的体内MRI也很昂贵,并且并不总是可用。在这里,我们描述了两个RF线圈的设计和构造,基于7T全身扫描仪中人脑组织的螺线管几何形状以及9.4T陶醉师中Marmoset脑样品的离体MRI的体内MRI。我们设计了7T螺线管RF线圈,以最大程度地提高磁带上的人脑样品的填充因子,以进行组织学,而构建了9.4T螺线管以适应50 mL离心管的条件。两个螺线管设计都以收发器模式运行。测得的B 1 +地图显示出感兴趣的成像量的高均匀性,并且与成像量相比,信噪比高。使用9.4T螺线管线圈以60 µm的各向同性分辨率获取了人脑样品的高分辨率(在平面为500 µm切片的厚度为500 µm)。
• 视线障碍物位于曲线内侧时的停车视距。中央隔离带、桥梁、墙壁、切坡、树林、建筑物和护栏都是视线障碍物的例子。请参阅第 1260 章,检查所选设计速度的停车视距。 • 超高是道路横截面的旋转或倾斜,以克服作用在通过曲线的车辆上的部分离心力。有关设计速度、曲线半径和超高之间关系的设计信息请参见第 1250 章。 • 协调垂直和水平对齐(请参阅第 1220 章)。
增加空气量的要求,同时增强其对下一代航空运输的可持续性要求飞机绩效的逐步变化,为此,超高宽高比翼的开发和技术升级是配合的一项关键策略是一项关键的策略。超高的纵横比翼结构具有更高的负载,这对飞机配置设计和相关技术构成了挑战。本文将双纤维(TF)概念描述为采用超高纵横比的有前途的配置之一。通过改进和集成多种方法和工具,开发了TF运输飞机概念设计和分析框架的方法。设计了中型TF运输飞机,并进行了灵敏度分析以探索设计空间,并使用多学科设计优化来优化TF运输飞机的配置。结果表明,与传统的悬臂配置相比,TF配置的优势显着,这在燃油消耗和最大起飞重量中分别降低了29.33%和33.60%。
摘要:我们将公司太阳预测作为一种策略,作为一种策略,以最佳的太阳能发电厂和最佳尺寸的存储系统结合使用,以弥补任何电源预测错误,因此完全消除了从网格连接的太阳能机队中发出的负载平衡不确定性。该策略的一个核心部分是我们称为隐式存储的工厂过度建筑。我们表明,该战略在经济上是合理的,但它是实现最小成本超高的太阳能穿透性的有效进入步骤,在该步骤中,稳定发电将成为先决条件。我们证明,在没有隐性存储策略的情况下,超高太阳渗透将要贵得多。使用纽约独立系统运营商(NYISO)作为案例研究,我们确定了企业预测的当前和未来成本,以比较每个ISO电气区域的全面场景,从而比较了集中式和分散的生产和评估载荷灵活性的影响。我们模拟了从公司预测到公司发电的策略的增长。我们得出的结论是,本战略实现了超高太阳能渗透率,在该战略中,太阳能可以牢固地提供整个NYISO负载,可以在本地实现,以与当前NYISO批发市场价格相当的电力生产成本。关键字:公司发电;储能;辐照预测;隐式存储;网格整合;超高渗透。
在人类连接组计划的带动下,具有超高梯度强度的扫描仪的开发显著提高了体内扩散 MRI 采集的空间、角度和扩散分辨率。可以利用改进的数据质量来更准确地推断微观结构和宏观结构解剖结构。然而,这种高质量的数据只能在全世界少数几台 Connectom MRI 扫描仪上采集,而且由于硬件和扫描时间的限制,在临床环境中仍然无法使用。在本研究中,我们首先更新了基于纤维束成像的手动注释主要白质通路的经典协议,以使其适应当今最先进的扩散 MRI 数据所能产生的更大体积和更大变化的流线。然后,我们使用这些协议手动注释来自 Connectom 扫描仪的数据中的 42 条主要通路。最后,我们表明,当我们使用这些手动注释的通路作为具有解剖邻域先验的全局概率纤维束成像的训练数据时,我们可以在质量低得多、更广泛可用的弥散 MRI 数据中对相同的通路进行高精度、自动重建。这项工作的成果包括来自 Connectom 数据的 WM 通路的全新综合图谱,以及我们的纤维束成像工具箱的更新版本,即受基础解剖学约束的 TRActs (TRACULA),该工具箱使用该图谱中的数据进行训练。图谱和 TRACULA 均作为 FreeSurfer 的一部分公开分发。我们首次全面比较了 TRACULA 与更传统的多感兴趣区域自动纤维束成像方法,并首次演示了在高质量 Connectom 数据上训练 TRACULA 以造福使用更温和的采集协议的研究。
