郁金香成立于2020年,其目标是通过创建世界上最佳的电池系统来加速电气化革命。Tulip代表建造具有高生产标准的可靠电池系统,就在欧洲。Tulip具有每年定制产品每年高达10,000个电池的能力,每个电池组都经过测试和记录,在其供应链上具有可追溯性。凭借其模块化技术,Tulip正在创建定制产品,同时为所有客户实现规模经济。
与传统的 2D 计算系统相比,超密集 3D 集成电路(3D IC),例如单片 3D IC(图 1),可以为数据密集型应用带来巨大的能量延迟积(EDP)优势 [1,2]。为了实现这些优势,需要将多层逻辑和存储器(例如,逻辑和/或存储器设备的薄层,以及相关的信号/全局金属布线)以 3D 形式集成,并使用有限长宽比的后端制程(BEOL)层间过孔(ILV)建立超密集(例如,间距 ≤ 100 纳米)垂直连接 [3]。现有的 BEOL 布线结构已经在使用这种纳米级 ILV。3D IC 变得至关重要,因为工艺技术小型化的根本限制使得传统的缩放路径更加困难。但是,必须克服重大的热挑战才能在多个 3D 层上实现高速和高功率计算引擎 [4-5]。如果没有新技术,未来 3D IC 的上层最高温度将大大超过可靠运行所需的上限(例如 [6] 中的 125°C)。我们使用图 1 中的单片 3D IC 来了解 3D 层中的温升和热耗散(详细分析见第 III 部分)。图 1 中的 N 层中的每一层都包含一层高速、高功率硅逻辑器件(例如,计算引擎)和由铜布线和超低κ 层间电介质 (ILD) 组成的 BEOL 层(例如,用于信号布线)。各层通过超密集 ILV 电连接。在某些设计中,每层还存在硅存储器、存储器访问设备和额外的 BEOL。3D IC 由附加的散热器进行外部冷却,散热器将产生的所有热量以散热器比传热系数 h(W/m 2 /K)散发到环境中。最高温度 T j 取决于散热器、环境温度和 N 层的热特性。散热器创新(如 [7])只需散热器上 10°C 的温升(即 h= 10 6 W/m 2 /K)即可消除 1000 W/cm 2 的热量,尽管
碳纳米管 (CNT) 具有一组独特的性能,例如高电流承载能力、高热导率、机械强度和极大的表面积,18 这些特性使其可用于众多应用。现在可以高效地生长高纯度的块状和表面单壁纳米管 (SWNT) 9 13,因此许多应用的生产限制似乎已经得到克服。然而,仔细观察就会发现,对于纳米管森林的许多关键应用而言,现有的生长方法所生成的森林的面积密度和性能仍然低 1 2 个数量级。以用 CNT 取代集成电路中的铜互连线为例,这是半导体路线图的一个重要里程碑。14 16 只有当 CNT 互连线的电阻低于铜时,才会使用 CNT 互连线,而这需要 CNT 面积密度至少为 2 10 13 cm 2 才能降低由量子电阻引起的串联电阻。然而,迄今为止实现的 SWNT 最高密度仅为 7·10·11 cm2,7,17 21 低了 30 倍(图 1)。散热器也存在类似的问题。虽然单个纳米管的导热系数可能与金刚石实心棒相当,3 但是,如果纳米管森林只填充了可用横截面积的 3%,实际导热系数就会低 30 倍,用处不大。22,23 为了克服这些限制,我们需要完全茂密的森林。我们在此介绍了一种催化剂设计,用于生长超高密度纳米管森林,接近所需的 2·10·13 cm2 密度,甚至可以达到更高的密度。
超高密度橄榄树(> 800棵树ha-1)在橄榄油生产国迅速扩大,这需要对橄榄种植系统进行强烈的修改,并具有重要的农艺,经济,社会文化和环境后果。其中,后者尤其未知。本文的目的是通过系统地审查当前证据并确定尚未填补的知识差距,将注意力对超高密度橄榄树的环境影响进行关注。结果,我们可以说,新的超高密度橄榄种植园降低了栖息地的异质性和复杂性,这些人工林的年轻树木对农田生物多样性的栖息地质量令人沮丧。此外,高输入使用(例如植物治疗疗法,肥料和供水)也可能产生生态影响。因此,我们得出结论,我)新的高度密集的橄榄树应仅限于生态价值较低的地区; ii)消费者应该有更多有关如何生产他们购买的橄榄油的信息,包括环境影响
关键词:Vertica FET、全通道、IGZO、3D Dram。DRAM 设备是大多数数字设备的重要组成部分,在云计算、边缘计算、物联网和人工智能的发展中发挥着至关重要的作用。目前,DRAM 扩展面临的挑战主要是由于存储电容减小和关断电流增加的不匹配。基于 IGZO 的场效应晶体管 (IGZO FET) 以其极低的 I OFF (<10 -22 A/µm) 而闻名,代表了减少 DRAM 单元泄漏的解决方案。基于 IGZO-FET 的 BEOL 兼容长保留 2T0C DRAM 单元的演示展示了一种非常有前途的方法来克服传统 1T1C DRAM 单元的不匹配挑战。我们展示了用于超高密度 DRAM 的垂直全通道 IGZO FET,具有 4F 2 位单元面积和超过 300 秒的长保留时间。并对垂直 CAA IGZO FET 的微缩能力和可靠性进行了研究和评估,工艺关键尺寸 (CD) 低至 50nm。32.8 μA/μm 的高驱动电流、92 mV/decade 的小亚阈值摆幅、良好的热可靠性和稳定性表明垂直 IGZO FET 是未来超高密度 3D DRAM/SoC 应用的有希望的候选者。
抽象的脱氧核糖核酸(DNA)已成为设计下一代超高密度存储设备的有前途的构建块。尽管DNA本质上是高度耐用且密度极高的,但其作为存储设备基础的潜力目前受到诸如昂贵且复杂的制造过程以及耗时的阅读工艺操作等限制的阻碍。在本文中,我们建议将DNA横梁阵列体系结构用于电气可读的读取 - 单位(DNA-ROM)。对于DNA-ROM,我们选择了两个DNA链分别代表位1和位0。DNA电荷传输已通过接触-DNA接触设置进行了研究。从DNA电荷运输研究中获得的结果已用于分析横梁阵列。通过将图像加载到128×128横杆上,对性能进行了分析。对于此应用,我们已经观察到了4.52%的位错误率,功耗为6.75 µW。
先进封装平台种类繁多,包括扇出型晶圆级封装/2.5-D、3D 堆叠封装和片上系统 (SoC)。多种 AI 和 HPC 技术利用高密度扇出型 HD-FO(或超高密度扇出型)/2.5-D 和 3D 技术,而用于服务器、网络、游戏和边缘设备的其他计算应用可能使用倒装芯片 BGA (FCBGA) 设计。下一代 HD-FO/2.5-D 封装通常具有相当大的占用空间,可集成非常大的芯片。世界顶尖半导体公司开发了许多此类设计的示例,例如 CoWoS ® 和 I-Cube ®。虽然方法和架构各不相同,但这些技术通常集成大型中介层芯片/重分布层 (RDL),其他芯片(逻辑、计算和堆叠高带宽存储器)集成在其上。结果就是封装体相当大,使得处理和保护变得更具挑战性。
住宅 – 温彻斯特十字路口建成后将由多种住宅用途组成,包括中高密度(5-8 户/英亩);高密度(8-14 户/英亩);和超高密度(14-20 户/英亩)。具体规划的七个规划区指定用于住宅开发:规划区 1、6、7、10、11、14 和 16。项目内的整体住宅密度相当于每英亩 3.7 个住宅单元(户/英亩)。该密度与温彻斯特十字路口具体规划附近的具体规划一致,包括梅尼菲北区(采用 SP 260)、梅尼菲东区(采用 SP 247)、温彻斯特山(采用 SP 293)和梅尼菲牧场(采用 SP 301)。单户独立地块面积建议不少于 2,000 平方英尺(参见第 III 部分,分区条例)。温彻斯特十字路口拟定的产品类型范围如下:
ST 深圳(中国)组装和测试线升级为工业级 SO8N 封装 105°C EEPROM 产品 SO8N 封装 105°C EEPROM 产品被所有客户和所有应用广泛地大批量使用。为了长期保持高水平服务和支持大批量生产,ST 决定将组装和测试线从高密度(HD)条带测试线转换为超高密度(SHD)条带测试线。这两条线都安装在 ST 深圳(中国)。自 2012 年以来,SHD 条带测试线已经为工业市场生产大批量 EEPROM SO8N 产品。有什么变化?ST 深圳(中国)的 SO8N 封装 105°C EEPROM 组装和测试从高密度(HD)条带测试线升级为超高密度(SHD)条带测试线。SHD 组装线以更高的并行度运行,组装流程与当前的 HD 线相同。随着持续改进,在芯片贴装和引线键合之间引入了等离子清洗步骤。已对引线框架尺寸进行了合理化。 SHD 条带测试线具有更高的并行度,并且测试流程和测试顺序与当前 HD 线相同。 SHD 条带测试线采用与当前 HD 线相同的测试设备运行。有关装配和测试流程的更多详细信息,请参阅附录 B。 为什么? 意法半导体存储器部门的战略是长期为客户提供产品和服务质量支持。 根据这一承诺,这一变革将确保长期可用性和 105°C SO8N 产能,同时提高产品制造质量。 什么时候? 发货将从 2023 年第 01 周开始。 当前 HD 条带测试线上的 105°C EEPROM SO8N 生产将持续到 2023 年 6 月底,以便有时间逐步提高 SHD 生产线的产能。 从 2023 年 6 月起,105°C EEPROM SO8N 产品将仅在 SHD 线上生产。 如何认证变更? 此变更已使用标准意法半导体公司质量和可靠性程序进行了认证。组装资格报告 RERMMY2005 现已提供,包含在本文档中。测试 (I2C/SPI) 资格报告 TERMMY2005-2 预计于 2022 年第 26 周发布。