MSC的中西部部分不必注册即可转移到太空商会美国真空学会。cryopanels and Cold Traps“由IT_第三届年会霍华德·金泽(Howard Kimzey),结构,SMD的结构; d代理3月18日星期五。系统测试和空间环境的经理将成为评估的共同赞助者,将欢迎弗兰克(FrankA. Knox,SMD。 将有200多个代表或会谈以其他论文为主持人,而将出现在中西部的b_¢MSC人士中,包括:由美国代表雇员的代理人,“ NASA中心和其他NASA中心的设施特征的雇员”。 他们对该领域感兴趣的MSC是MSC 20英尺。 直径真空包括:“'超高真空欢迎参加会议室”,由T. B. L Eech,乘员室确定疗法的机组人员 - 将在建筑系统部门举行:“某些Ing I Ing I Auditorium的可能的隐蔽行为。A. Knox,SMD。将有200多个代表或会谈以其他论文为主持人,而将出现在中西部的b_¢MSC人士中,包括:由美国代表雇员的代理人,“ NASA中心和其他NASA中心的设施特征的雇员”。他们对该领域感兴趣的MSC是MSC 20英尺。直径真空包括:“'超高真空欢迎参加会议室”,由T. B. L Eech,乘员室确定疗法的机组人员 - 将在建筑系统部门举行:“某些Ing I Ing I Auditorium的可能的隐蔽行为。增加热火成岩方法的员工“:冷阴极磁极磁铁仪的特征”:“ UHV主体的设计:材料测试的太阳和行星系统”:DR。uhv Systems”和“ Gas SICS S.illbe在这里通过轰炸的演讲发表。r o Bert Jastrow博士的周,下午1:30。jastrow of goddard或ab +orb +oo在钼上使用电子提供讲座,在这里提供讲座。 ma nn ed spacecraft ce n ter n ter n ext在真空中的1 atungsten表面的审计中”。jastrow of goddard或ab +orb +oo在钼上使用电子提供讲座,在这里提供讲座。ma nn ed spacecraft ce n ter n ter n ext在真空中的1 atungsten表面的审计中”。3月,该小组还将其G T -3 S Pacec Raf T - Gemini Spa c e c r a ft n o。3 is s h own a s it i s ho i s te d direct o r o f NASA's Goddard I 1, and at 9 a.m., Friday, March annual business meeting and to the white room abov e the la u n c h v e hi c l e o n Pa d 1 9 at Cape K e n ned y , Institute for Space Studies in 12. have an installation of new prior to the mating of the t wo.新约克。参加这些讲座官员。论文将是博士+ Jastrow在MSC。在所有MSC专业时代(周四提出)和美国太空的首个
按照之前描述的方法15,在90 nm SiO 2 / Si 基底上新沉积的金膜(30 nm Au 和 1 nm Ti 粘附层)上机械剥离非常大规模的单层 MoS 2 薄片。使用光学相机可以轻松识别剥离的 MoS 2,该相机引导 STM 探针位于单层区域之上以进行成像、光谱和传输研究。在进行第一组 STM 测量之前,将样品在 T = 250 °C 的超高真空条件下(p < 10 −10 Torr)退火数小时以去除水和弱键合分子。初始 STM 研究使用金或钨 STM 探针进行。样品随后在 400 °C 下退火以增加硫空位密度。之后,使用用 50% 饱和 KCl 溶液蚀刻的金 STM 探针进行 STM 和原位传输测量。所有 STM 测量均采用在 100K 下运行的可变温度 STM 系统进行。对于 STS 测量,使用 1Khz 下 20 mV 的调制信号。对于传输测量,使用 3.3 nA 或 330 nA 的顺从电流。在每次传输测量之前,使用 MoS 2 带隙内的稳定电压将金 STM 尖端固定在表面上,以确保尖端和 MoS 2 表面之间的真空间隙减小。然后将 STM 尖端进一步靠近表面以提供稳定的机械和电接触。MoS2 的高机械强度可防止在物理接触期间对尖端和样品造成任何损坏 25
摘要:与传统的湿化学合成技术相比,超高真空条件下有机网络的表面合成几乎没有控制参数。分子沉积速率和基底温度通常是唯一需要动态调整的合成变量。本文我们证明,无需专用源,仅依靠回填氢气和离子规细丝即可创造和控制真空环境中的还原条件,并且可以显著影响用于合成二维共价有机骨架(2D COF)的类 Ullmann 表面反应。使用三溴二甲基亚甲基桥连三苯胺 [(Br 3 )DTPA] 作为单体前体,我们发现原子氢 (H • ) 会严重阻碍芳基 − 芳基键的形成,我们怀疑该反应可能是限制通过表面合成产生的 2D COF 最终尺寸的一个因素。相反,我们表明,控制相对单体和氢通量可用于生产大型自组装单体、二聚体或大环六聚体岛,这些单体、二聚体或大环六聚体本身就很有趣。从单一前体表面合成低聚物可避免湿化学合成时间长和沉积源多的潜在挑战。使用扫描隧道显微镜和光谱 (STM/STS),我们表明,通过此低聚物序列的电子状态变化提供了对 2D COF(在没有原子氢的情况下合成)的深刻见解,这是单体电子结构演变的终点。关键词:扫描隧道显微镜 (STM)、共价有机骨架 (COF)、三角烯、异三角烯、DTPA、自组装单层 (SAM)
中性原子系统长期以来一直是复杂量子物理的试验台。最近,量子研究的焦点已从基础科学转向量子计算应用。尽管几种不同的硬件平台已在此方向的能力方面取得了长足进步,但每种平台在扩展系统规模方面都有各自的障碍:无论是物理上的量子比特数,还是时间上的退相干前的代码周期。具体而言,在中性原子系统中,缺乏以比原子退相干快得多的时间尺度无损读取原子状态的能力。通过将中性原子里德堡阵列的几何可重构性和设计的强相互作用与高精细度腔的强光耦合相结合,我们可以构建一种超越其他硬件系统许多限制的新量子架构。在本论文中,我们阐述了将里德堡原子阵列耦合到腔体的情况,讨论了原子物理与量子计算之间的联系,以及使光腔系统比其他当前量子计算机实现更具优势的基本物理原理。然后,我们描述了这种系统的设计、测试和实现。我们的系统同时适应里德堡激发、可重构光镊阵列、选择性原子态寻址和与光腔的强耦合。我们详细讨论了在超高真空中安装这种系统的风险和技术考虑,包括发现一种新的高反射率镜材料失效机制。最后,我们概述了未来的具体步骤,以展示我们系统中的原理验证表面码纠错,为使用中性原子进行容错量子计算铺平道路。
摘要。使用扫描隧道显微镜(STM)模板的氢终止硅的掺杂剂前体分子的附着,已用于将电子设备与次纳米计精度进行重新处理,通常用于量子物理学实验。这个过程,我们称之为原子精度高级制造(APAM),在固体溶解度极限之外掺入硅,并产生电气和光学特性,这些特性也可能对微电子和等离子化的应用有用。但是,扫描的探针光刻缺少开发更复杂的应用所需的吞吐量。在这里,我们演示并表征了APAM设备工作流程,在该工作流程中,原子层的扫描探针光刻已被光刻所取代。紫外线激光显示出在纳秒时间尺度上氢化所需的温度高于温度的局部和控制的硅,这是一种抗性不足和过度暴露的过程。stm图像表明狭窄的能量密度范围,其中表面既受嘲笑又未受损。对光热加热和随后的氢脱附动力学进行建模表明,在我们的模式过程中达到的sil iCON表面温度超过了温度填充实验中氢去除氢所需的表面温度。与STM相比,发现通过依次的光灭绝区域进行磷的范德Pauw结构,然后将其暴露于磷酸的区域,然后将其暴露于磷酸。©作者。[doi:10.1117/1.jmm.20.1.014901]最后,还证明了可以同时执行的光含量和前体暴露步骤,这是使APAM在超高真空外启用APAM的潜在途径。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分配或复制此工作需要完全归因于原始出版物,包括其DOI。
摘要。使用扫描隧道显微镜(STM)模板的氢终止硅的掺杂剂前体分子的附着,已用于将电子设备覆盖具有次纳米计精度的电子设备,通常用于量子物理学实验。这个过程,我们称之为原子精度高级制造(APAM),在固体溶解度极限之外掺入硅,并产生电气和光学特性,这些特性也可能对微电子和等离子化的应用也有用。但是,扫描的探针光刻缺少开发更复杂的应用所需的吞吐量。在这里,我们演示并表征了APAM设备工作流程,在该工作流程中,原子层的扫描探针光刻已被光刻所取代。紫外线激光显示出在纳秒时间尺度上氢化所需的温度高于温度的局部和控制的硅,这是一种抗性不足和过度暴露的过程。stm图像表明狭窄的能量密度范围,其中表面既受嘲笑又未受损。对光热加热和随后的氢脱附动力学进行建模表明,在我们的模式过程中达到的sil iCON表面温度超过了温度填充实验中氢去除氢所需的表面温度。与STM相比,发现通过依次的光灭绝区域进行磷的范德Pauw结构,然后将其暴露于磷酸的区域,然后将其暴露于磷酸。©作者。[doi:10.1117/1.jmm.20.1.014901]最后,还证明了可以同时执行的光含量和前体暴露步骤,这是使APAM在超高真空外启用APAM的潜在途径。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分配或复制此工作需要完全归因于原始出版物,包括其DOI。
上下文。高度不饱和的碳链,包括波利尼斯。随着金牛座分子云-1(TMC-1)的Quijote调查的成功,该社区在检测到的碳链数量中看到了“繁荣”。另一方面,罗塞塔(Rosetta)任务揭示了完全饱和的碳氢化合物,C 3 H 8,C 4 H 10,C 5 H 12,(在特定条件下)C 6 H 14与C 7 H 16的C 6 H 14,从Comet 67p/Churyumov-Gerasimenko中。后两者的检测归因于尘埃泛滥的事件。同样,Hayabusa2 Mission从小行星Ryugu返回的样品的分析表明,Ryugu有机物中存在长期饱和脂肪族链。目标。在类似于分子云的条件下,不饱和碳链的表面化学性质可以在这些独立观察结果之间提供可观的联系。但是,仍缺乏基于实验室的研究来验证这种化学反应。在本研究中,我们的目标是通过在10 K.方法下超高真空条件下的C 2 N H 2(N> 1)Polyynes的表面氢化来验证完全饱和的烃的形成。我们进行了两步实验技术。首先,紫外线(≥121nm)辐照C 2 H 2冰的薄层,以将C 2 H 2的部分转化为较大的Polyynes:C 4 H 2和C 6 H 2。之后,将获得的光处理冰暴露于H原子中,以验证各种饱和烃的形成。结果。除了先前研究的C 2 H 6外,我们的研究证实了较大的烷烃的形成,包括C 4 H 10和(暂时)C 6 H 14。对获得的动力学数据的定性分析表明,鉴于表面温度为10 K,HCCH和HCCCCH三键的氢化以可比的速率进行。这可能发生在乌云阶段的典型时间表上。还提出了通过N-和O-O-bearenty Polyynes的表面氢化形成其他各种脂肪族有机化合物的一般途径。我们还讨论了天文学的含义以及与JWST鉴定烷烃的可能性。
硅是迄今为止微型电源行业中最重要的半导体材料,主要是由于Si/Sio 2接口的高质量。因此,需要化学官能化Si底物的应用集中在SIO 2表面的分子移植上。不幸的是,存在与氧化硅(SIO 2)上接枝的许多有机层的均匀性和稳定性的实际问题,例如硅烷和磷酸盐,与SI-O-SI和SI-O-P键的聚合和水解有关。这些问题刺激了在无氧化物Si表面上接管功能分子方面的努力,主要是在潮湿的化学过程中。因此,本综述直接集中于从H端的Si表面开始的无氧化物Si表面的湿化学表面功能化。首先总结了无氧化物H-终止SI的主要制备方法及其稳定性。官能化被分类为通过功能性有机分子(例如氢硅烷化)和其他原子直接取代的H-终止的间接取代(例如卤素)或小型官能团(例如哦,NH 2)可用于进一步反应。重点放在最近发现的方法上,以在其他无氧化物,无h端和原子平坦的Si(111)表面上产生官能团的纳米图案。这种模型表面特别有趣,因为它们使得能够获得表面化学反应的基本知识。关键字硅表面,氢终止,有机官能化,自组装单层,表面激活,纳米图案缩写SI,硅; Sio 2,氧化硅;山姆,自组装的单层; XPS,X射线光电子光谱; FT-IR,傅立叶变换红外; AFM,原子力显微镜; nn,最近的邻居; nnn,下一个最近的邻居; RT,室温; TFT,薄膜晶体管; ALD,原子层沉积; MPA,甲膦酸; ODPA,八烷基膦酸; DFT,密度功能理论; KMC,动力学蒙特卡洛; ML,单层; H,氢; T-bag,通过聚集和生长束缚;哦,羟基; UHV,超高真空; MOF,金属有机框架; SURMOF,表面金属有机框架; lbl,逐层; PL,光致发光; F,氟;
利用其电子结构的特性来观察独特的物理现象,例如手性[15–17]和轴引力异常、[18]圆形光电效应、[19–20]手性声波、[21–22]表面态增强的埃德尔斯坦效应[23]或最近提出的手性霍尔效应。[24]大多数这些效应的观察取决于是否可以轻松访问WSM的拓扑电子态。在这方面,抑制非拓扑(平凡)表面态以及修改费米能级位置以获得所需费米面拓扑的能力将允许充分揭示拓扑表面态对物理可观测量的作用,此外,还可以按需构造费米面以利用电、声或光可测输出。到目前为止,电子结构的多样性是通过探索不同的 WSM 实现的,但对同一材料中拓扑能带形状和大小的真正控制仍然难以实现,主要是因为缺乏自下而上的超高真空合成方法,无法控制表面终止和费米能级位置,例如通过掺杂或应变。需要克服这一挑战才能实现费米能级设计的韦尔半金属异质结构,从而产生大量新平台来探索基于拓扑的基本现象和设备应用。在这项工作中,我们展示了 I 型韦尔半金属 NbP 电子结构的两种显著修改,这得益于成功的外延薄膜生长合成路线。 [25] 首先,由于表面悬空键被有序磷终端饱和,NbP 的蝴蝶结状(平凡)表面态被完全抑制,表现为(√2×√2)表面重构。其次,通过用 Se 原子化学掺杂表面,费米能级发生约 + 0.3 eV(电子掺杂)的大幅偏移,同时保留了原始的 NbP 能带结构特征,从而首次在实验中可视化了远高于 Weyl 点的拓扑能带色散,并强调了通过分子束外延过程中的表面化学掺杂可以实现的大费米能级可调性。我们的工作为实现最近的理论提议开辟了可能性,例如依赖于纯拓扑
例如,我们可以将二维磁体的磁性印记到其他层上,而不改变它们的固有性质,从而创造出新型的自旋电子和磁子装置。[8–10] 这种设计概念可以用于将磁性与超导相结合的系统,以实现拓扑超导。[11,12] 由于它在构建用于拓扑量子计算的基于马约拉纳的量子比特模块中具有潜在作用,因此目前它正受到广泛关注。[12–14] 虽然很少有潜在的真实材料表现出拓扑超导性,[15–18] 但设计材料中所需的物理特性来自不同成分之间精心设计的相互作用。 对于拓扑超导,需要将 s 波超导与磁性和自旋轨道耦合相结合,以创造出人工拓扑超导体。 [12,19] 然而,组分之间的耦合对界面结构和电子特性高度敏感 [2,20],因此,具有原子级清晰和高度均匀界面的范德华材料是一个具有吸引力的平台,可用于实现和利用设计材料中出现的奇异电子相。最近有研究表明,层状材料在单层 (ML) 极限下仍能保持磁性。[4,5,21] 虽然第一份报告依赖机械剥离进行样品制备,但相关材料三溴化铬 (CrBr 3 ) 和 Fe 3 GeTe 2 也在超高真空 (UHV) 下使用分子束外延 (MBE) 生长,[22,23] 这对于实现干净的边缘和界面至关重要。由于这些材料的层状性质,它们本身缺乏表面键合位点,从而阻止了层之间的化学键合,并导致对界面的更好控制。最近,我们利用MBE成功制备了基于vdW异质结构的超导铁磁混合体系。[24,25] 更重要的是,通过结合自旋轨道耦合、二维铁磁CrBr 3 和超导铌二硒化物(NbSe 2 ),我们利用低温扫描隧道显微镜(STM)和扫描隧道光谱(STS)证明了一维马约拉纳边缘模式的存在。[25] 然而,对于未来的应用,还需要进一步系统的研究,以更好地理解在NbSe 2 基底上生长的单层CrBr 3 的电子和磁性。