1。引入量子信号的独特特征,例如插入和叠加,使它们非常容易受到环境干扰的影响。因此,量子应用的成功取决于单光子的传输和操纵的可靠性。超低损耗光纤连接器在这种情况下起着关键作用,是量子设备之间的关键联系。标准连接器可能会引入重大损失,从而损害了量子通信的保真度。超低损耗连接器通过最大程度地减少信号降低并保持量子状态的完整性来应对这一挑战。2。量子光子量子应用中的光纤连接器需要组合精确的,耐用性和高性能在非常专业的条件下可靠地发挥功能。钻石的E-2000®和MiniAvim®连接器即使受到挑战性的环境因素,也是由于其出色的光学性能,鲁棒性和适应性的原因而脱颖而出。e-2000®特别以其集成的快门机械性而闻名,该机构可保护纤维末端面部免受污染和损害,从而确保随着时间的推移一致的性能。另一方面,MiniAvim®由于其紧凑,轻巧的设计与坚固的可靠性相结合而受到重视,使其成为挑战性环境条件(例如极端温度和振动)的首选连接器。3。在所有制造和组装过程中,必须测量这些参数并控制在控制之下。此外,Diamond的真空进料提供了在超高真空(UHV)和低温条件下运行的量子系统的关键界面解决方案。旨在实现跨真空屏障的预先和有效的光线传输,此进料可确保在将光学组件整合到量子环境中时,可确保最小的信号损失和最佳性能。Diamond的先进技术和工程确保这些解决方案满足量子研发的严格要求,提供无与伦比的可靠性和光学精确度。插入损失的原因只能通过控制多个参数,例如: - 套圈特性:直径,形式和精度孔直径和同心性来保证连接器的光学性能; - 抛光参数; - 端面瑕疵(划痕,凹坑和污染); - 纤维核的侧面和角度未对准。横向未对准是单模连接器中插入损失的最重要贡献者。纤维制造商通常会指出最大的核心对偏心。0.5微米和±1微米内的覆层直径精度。
暴露 [7] 或浸入水中时。 [8] 相比之下,据报道 MoTe 2 是反应性最强的 TMD 之一。 [9] 然而,人们对导致这些材料行为截然不同的原子级过程知之甚少。像差校正(扫描)透射电子显微镜 (STEM) 可以以亚秒级分辨率获取材料的精确原子结构。然而,用于成像的高能电子也会引起结构变化,正如已经在 MoS 2 和 MoTe 2 中证明的那样。在 MoS 2 中,连续的电子暴露会通过电子激发和连锁损伤的共同作用迅速导致硫空位 [10] 的形成,[11] 它们首先聚集成空位线,然后出现富含钼边缘的孔隙。 [12] 相反,大概由于 Te 的质量大于 S,连锁损伤被抑制,MoTe 2 中的空位形成速度明显较慢,从而可以在不去除原子的情况下发生动态相变。 [13] 尽管如此,在这两种材料长时间成像的过程中,结构变化是不可避免的。 因此,为了研究与氧化相关的结构变化,必须将它们与纯电子辐照引起的效应区分开来。 这就需要具有超高真空的仪器,并在成像过程中在样品周围引入受控的低压气氛。 [14] 此类实验已经表明,石墨烯中的化学蚀刻发生在氧分压 > 3 × 10 − 8 托时,[15] 远低于带有侧入支架的 TEM 仪器的典型压力,导致孔隙从缺陷位置开始生长。 [16] 原始石墨烯区域不受影响。 然而,对所有其他 2D 材料仍然缺乏类似的研究。在这里,我们使用同样的策略来比较低压(9 × 10 − 10 − 4 × 10 − 7 托)氧气气氛下悬浮的二维 MoS 2 和 MoTe 2 单层的行为,同时通过 STEM 进行原子分辨率成像。在电子辐照下,O 2 分子可以分裂成原子氧,从而将化学效应加速到实验可及的时间尺度。在我们的实验中,MoS 2 中的结构损伤与氧分压无关,显示出众所周知的[10,12,17]与电子束相关的空位产生以及随后的富钼边缘结构孔隙。相反,在 MoTe 2 中,不同氧气压力下的结构变化有明显差异。具体而言,在超高真空中,MoTe 2 中的损伤与 MoS 2 中的损伤相似,除了
在1000 K处的参考文献[7]中合成了石墨烯。从表面制备实验室,荷兰获得Cu(111)样品,并以0.1°精度将其表面对齐(111)平面。将样品生长在附着在扫描隧道显微镜(STM)室的样品生长容器中。随后,将样品通过超高真空手提箱转移到正常的X射线立波(XSW)室。将样品保存在10-10 mbar压力范围内。图像1-4(表S2)和图S1-4均在同一样本上测量,并显示了XSW测量。使用单色的AlKαX射线源来评估溅射和退火过程后晶体的清洁度。STM和低能电子差异(LEED)测量表明Cu(111)晶体上的较大梯田。STM。沿Moir´e模式的高对称轴的多个STM图像采集了线条。对于每种情况,通过拟合正弦曲线提取了它们的周期性(P)以及最大值和最小值(∆ D)之间的明显高度差异。p和∆ d是通过沿着每个moir'e模式的高对称方向进行三条线扫描的平均来计算的(图S1-S5)。均方根位移值(RMS-D)是根据假设高度的正弦分布的每个STM Moir´e图像的平均波纹计算得出的。[8]。通过LEED确定铜方向(图这些RMS-D值可以转换为Debye-Waller因子(DWF),并在参考文献中的步骤后进一步转换为相干分数。表S2中总结了结果以及文献[9]的NC-AFM数据,为此,我们使用报告的∆ D以与我们自己的STM数据相同的方式来计算RMS-D和相干分数。s6),我们能够为图像1-4分配Moir´e和Cu晶格之间的角度,这在表S2中总结了。对于图像5(图S5)无法确定这个角度,因为该样品未获得低能电子差异(LEED)。参考。 [7]提出了与本研究相同的叠氮酮生长程序生长的石墨烯的LEED模式。 LEED数据显示了弧,这些弧以前归因于Cu(111)底物上的石墨烯的多个方向[10]。参考。[7]提出了与本研究相同的叠氮酮生长程序生长的石墨烯的LEED模式。LEED数据显示了弧,这些弧以前归因于Cu(111)底物上的石墨烯的多个方向[10]。
方法样品制备使用“撕扯和堆叠”方法制造器件。用聚乙烯醇(PVA)拾取石墨烯和hBN。然后,将异质结构翻转到由甲基丙烯酸甲酯共聚物(Elvacite 2550/透明胶带/Sylgard 184)组成的中间结构上,并转移到具有 Ti/Au 电极的预先图案化的 SiO 2/Si 芯片上。将残留聚合物溶解在N-甲基-2-吡咯烷酮、二氯甲烷、水、丙酮和异丙醇中。我们进一步使用AFM尖端清洁和高温形成气体退火程序清洁样品表面。最后,将器件在170°C的超高真空中退火12小时,并在400°C下退火2小时,然后将其转移到STM中。 STM 测量 STM/STS 测量是在自制的稀释制冷机 STM 上进行的,其钨尖端在 Cu(111) 表面上制备。MATBG 的载流子密度由施加到简并掺杂 Si 的栅极电压 V g 和通过 Au/Ti 电极施加到 MATBG 的样品电压 V s 控制。dI/dV 是通过锁定检测由添加到 V s 的交流调制 V rms 引起的交流隧道电流来测量的。测量是在样品偏置电压 V s 接近零的情况下进行的,以避免由于 K 点或 M 点声子 43 引起的非弹性隧穿。序参数分解有关此过程的完整详细信息和说明,我们请读者参阅 SI。简而言之,大型低偏置 STM 图像被分割成较小的 0.25 - 1 nm 2 子区域。每个子区域都相对于每个子区域的中心进行傅里叶变换。我们对 FFT 峰值应用位置相关的相位因子,以强制跨子区域保持一致的原点。在 IVC 波矢处获得的每个局部 FFT 的三个独立复值分解为三个复 IVC 序参数(“IVC 键”、“IVC 位点 A”和“IVC 位点 B”),它们对应于 C 3 点群的三个不可约表示 {(1, 1, 1)、(1, ω, ω 2) 和 (1, ω 2 , ω),其中 ω ≡ e 2πi/3 }。根据构造,如果 LDOS 是莫尔周期的,则这些序参数也是莫尔周期的。参考文献:1. Cao, Y. 等人。魔角石墨烯半填充时相关绝缘体的行为
総合研究栋b110“ 2D材料作为非常规环境的保护涂层” Hisato Yamaguchi,Los Alamos国家实验室国立ロス・アラモス国立研究所 国立ロス・アラモス国立研究所 国立ロス・アラモス国立研究所 国立ロス・アラモス国立研究所尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登山口尚登尚登山口尚登尚登山口尚登山口山口山口山口山口山口尚登山口研究员山口山口山口山口山口山口研究员研究员山口山口山口山口山口山口山口山口山口山口山口山口山口山口山口山口原子上的石墨烯层薄层,以通过直接阻断腐蚀反应物(例如氧气)(氧气,而与受保护的材料性能最少交替)来保护表面。原子薄度的高度抗腐蚀性能对于在非常规环境下的应用数量很有吸引力。一个例子是保护粒子加速器的电子源。高量子效率半导体光(由碱元素组成,因此需要10 -10 Torr/10 -8 PA的超高真空才能保持其性能。为了保护这种表面,不仅涂料需要表现出高气势屏障的性能,而且还需要在原子上稀薄,以使光电子有效地逃脱到真空中。另一个例子是对核应用的actinides的保护。系统通常无法在常规涂层的〜微米厚度下忍受杂质包含,因此涂料需要厚度〜Nanomer厚。在本演讲中,我将向上述两个应用程序介绍我们的进度。关于粒子加速器电子源的保护,我们证明了3个数量级增加了3个数量级的碱抗抗氧化物半导体光电座的主动压力增加,并在2019年赢得了R&D 100奖。我们最近开始保护肌动剂,并证明了针对氢腐蚀的寿命增强。
自从石墨烯 (tBLG) 被发现以来,各种新奇的物理现象被揭示出来,例如独特的电子特性。 [3] 特别是,根据扭曲角度 (θ),具有低θ(1.1至5°)的tBLG表现出不同的物理特性,例如莫特绝缘,超导和异常导电行为,这些特性引起了更多的关注。 [4] 此外,tBLG还被发现在电化学,手性和慢等离子体中发挥着重要作用。 [5] tBLG已成为探索物理性质和寻找新应用的有力模型。 因此,可控制备θ范围为0至30°的高质量tBLG是一项艰巨的挑战。 目前,tBLG的制备主要依赖于人工堆叠的方法,例如堆叠单层石墨烯和折叠单层石墨烯。 [6] 但多次转移过程形成的污染和褶皱不可避免地影响tBLG的耦合质量,降低其固有的物理性能。此外,在超高真空条件下,通过热Si升华在氢刻蚀的6H-SiC(000-1)衬底上制备了tBLG。[7] 但这种方法成本不高,并且需要复杂的石墨烯转移程序。化学气相沉积(CVD)被认为是一种制备高质量石墨烯的简便、可扩展的方法[8],其中Cu和Ni被广泛用作直接生长石墨烯的基底。然而,由于Cu中碳含量低,除非采用复杂的工艺,否则很难以Cu为催化剂制备多层石墨烯。[9] 此外,虽然已经利用Cu-Ni合金作为基底来控制石墨烯层的生长,但是很难打破AB堆叠石墨烯的对称性来形成扭曲石墨烯。[10] 最近,Sun等人[11] 在石墨烯层转移过程中,引入了碳和碳键,从而实现了石墨烯的转移。报道了一种在低压 CVD 系统下引入气流扰动的异位成核策略,用于在 Cu 箔上生长石墨烯畴。[11] 因此,迫切需要找到一种简单的方法来制备具有大扭曲角度范围窗口的高质量石墨烯畴,这对于探索石墨烯畴的独特性能非常关键和必要。在本文中,我们开发了一种在环境压力下在液态 Cu 基底上制备石墨烯畴的简便方法。在高于固态 Cu 熔点(1083 ° C)的生长温度下,在液态 Cu 表面生长的石墨烯畴保持对齐取向。通过调节生长温度,对齐状态被打破,在液态 Cu 上生长的石墨烯畴在表面下移动和旋转
伯克利地质年代学中心和加州大学伯克利分校的舒斯特实验室 实验室描述 PI Shuster 负责 BGC 和 UCB 的实验室设施,用于样品制备、特性分析、(U-Th)/He 和 4 He/3 He 热年代学以及宇宙成因核素分析。 设施包括: BGC 惰性气体实验室。BGC 惰性气体实验室设有: • 惰性气体热年代学实验室 (NGTL)。该设施设计用于 4 He/3 He 热年代学、40 Ar/39 Ar 热年代学、通过控制热提取表征惰性气体扩散动力学以及宇宙成因 21 Ne 和 3 He 测量。该实验室还可用作传统的 (U-Th)/He 实验室。NGTL 包括 (i) 经过校准的双目显微镜和摄像系统,用于制备和测量样品的几何形状; (ii) 超高真空 NG 提取系统,包括三个带有光束传输光学器件和高温计和热电偶反馈控制的二极管激光系统,在 175-1500 o C 之间提供优于 +/- 10 o C 的精度和准确度;(iii) 气体净化系统,包括 Janis 低温系统和校准标准和气体加标系统;(iv) Pfeiffer 气源四极杆质谱仪,用于使用同位素稀释测量 NG 丰度;(v) 可调收集狭缝 MAP-215-50 扇区场 NG 质谱仪,用于高精度同位素比测量;(vi) 激光烧蚀 ICPMS 实验室(如下所述),用于测量 U 和 Th。NGTL 的初始建设部分由 NSF MRI 拨款 EAR-0618219 资助,授予 PI Shuster,并继续获得 Ann 和 Gordon Getty 基金会的支持。 NGTL 实验室包括第二个可调收集狭缝 MAP-215-50 NG 质谱仪,该质谱仪配备自动稀有气体提取和低温纯化系统,可与上面描述的 NGTL 激光加热系统耦合,并针对宇宙成因 3 He 和 21 Ne 测量进行了优化,最初由 NSF I&F 计划拨款 EAR-1054079 资助给 PI Shuster。BGC U 子实验室。BGC U 子实验室包括一个带有过滤空气供应的温控仪器室,其中设有 LA-ICPMS 设备;一个相邻的 HEPA 过滤清洁化学实验室;以及专用的样品制备设施。• 激光烧蚀 ICPMS 实验室。该设施用于通过同位素稀释和激光烧蚀测量磷灰石和/或锆石中的 U 和 Th 浓度,以进行 (U-Th)/He 测定和 4 He/3 He 热年代学。该设备还用于通过同位素稀释法测量石英中的铀和钍,这对于解释宇宙成因 21 Ne 测量结果必不可少。它由 Thermo Fisher Scientific Neptune Plus 多接收器 ICPMS 组成,配有九个法拉第探测器,带有计算机切换的 10 11 和 10 12 欧姆输入电阻、具有离子计数和高丰度灵敏度离子能量过滤器的离散倍增电极电子倍增器、大容量干式接口泵以及高性能样品和撇取锥。该实验室最初由 NSF MRI 拨款 EAR-0930054 资助给 PI W. Sharp 和 D. Shuster,并继续获得 Ann and Gordon Getty 基金会的支持。UCB 和 BGC 的湿化学实验室。BGC 和附近的加州大学伯克利分校地球和行星科学系的 PI Shuster 可以使用专用的湿化学实验室空间。这些实验室包括标准通风柜(适用于矿物分离、酸蚀样品制备和常规(即非空白限制)石英中的 Be 提取)和一个过滤空气层流下流罩(适用于低空白 Be 提取化学)。