第 3 章 图 3.1:铁氧体定子铁芯的横截面。尺寸以毫米为单位。 图 3.2:具有改进槽的定子铁芯的横截面。 图 3.3:可能的 16/16 定子-转子极配置,从而产生单相 SRG。 图 3.4:(a) 预期电感曲线和 (b) 预期电流波形。针对图 3.3 中的机器。 图 3.5:可能的 16/8 定子-转子极配置。两相机器。为高速 SRG 选择的几何形状。 图 3.6:可能的 16/12 定子-转子极配置,从而产生四相机器。 图 3.7:与磁通路径相关的基本术语。 图 3.8:所选几何形状的转子层压件的横截面。尺寸以毫米为单位。 图 3.9:(a) 一个定子槽中可用于绕组的空间。(b) 定子极的顶视图。图 3.10:考虑扩展定子极弧的 SRG 相电感曲线。图 3.11:SRG 准线性模型的 `P-i-O 特性。图 3.12:完全打开的平顶电流波形示例。8d1y 5.3°,和 0,=27.8°。图 3.13:完全打开的电流波形示例的 EC 环路。
可用版本的HSPR-X-I-1G4-SI-FST 1.035“ -40螺纹法兰,带有内部螺纹耦合器环(外径30毫米),用于免费空间应用。与许多光学标准配件兼容,并与各种类型的光纤连接器适配器一起使用。可选的可用:纤维适配器PRA-FC,PRA-FCA和PRA-FSMA。与相对大0.4 mm直径。在HSPR-X-I-1G4-SI输入耦合中安装的光电二极管并不重要。但是,建议使用低数值孔径(NA)的标准SM 9/125纤维(PC或APC),以确保接近100%的耦合效率。HSPR-X-I-1G4-SI-SI-FC固定/永久FC光纤连接器,可用于高耦合效率和出色的转换增益精度。
摘要 超可靠低延迟通信(URLLC)作为第五代(5G)和第六代(6G)蜂窝网络的主要通信服务之一,对于支持各种新兴的关键任务应用至关重要。然而,现代移动网络无法满足延迟和可靠性要求,以及其他服务质量(QoS)要求,包括频谱效率、能源效率、容量、抖动、往返延迟、网络覆盖等。为了满足各种URLLC应用的不同QoS要求,机器学习(ML)解决方案有望成为未来6G网络的主流。在本文中,我们首先将6G URLLC愿景分为三种连接特征,包括无处不在的连接、深度连接和全息连接,以及它们对应的独特QoS要求。然后,我们确定了满足这些连接要求的潜在挑战,并研究有前景的ML解决方案,以实现6G URLLC服务的智能连接。我们进一步讨论了如何实现机器学习算法来保证不同 URLLC 场景(包括移动性 URLLC、大规模 URLLC 和宽带 URLLC)的 QoS 要求。最后,我们给出了一个下行 URLLC 信道接入问题的案例研究,分别通过集中式深度强化学习 (CDRL) 和联邦式深度强化学习 (FDRL) 来解决,验证了机器学习对 URLLC 服务的有效性。
高质量的复合材料在太空应用中已经使用了几十年,主要用于载人航天器、卫星结构和航天运载火箭。它们在运载火箭中有着广泛的应用,例如固体火箭发动机和燃料和气体压力容器。许多复合材料用作重返大气层的车辆的热保护系统。碳纤维复合材料通常用于卫星结构及其有效载荷系统。1 卫星的总线结构由铝蜂窝芯和复合材料蒙皮制成。其他需要尺寸稳定性的结构由增强复合材料制成。图 1 描述了复合材料在先进空间结构中的应用示例,以及如何确定它们在受到超高速碎片影响时的性能。这些复合材料有助于在太空极端温度下保持极端尺寸稳定性。2 对更大复合结构的需求促使开发高质量的复合结构,这些结构可以用更少的接头制造这些组件,从而增加使用复合结构的好处。3
钛合金具有高强度重量比、高耐腐蚀性和高熔点等优异性能,已广泛应用于航空航天工业。然而,据推测,通过对钛合金进行涂层处理,可以进一步提高其性能,使其更耐超高速撞击。早期的实验研究表明,用 Ti/SiC 金属基纳米复合材料 (MMNC) 涂覆 Ti-6Al-4V 基材可提高复合材料的抗超高速撞击性能。涂层中 SiC 的体积分数为 7%。这些实验是使用光滑粒子流体动力学 (SPH) 建模方法模拟的。Ti-6Al-4V 基材和 Lexan 弹丸使用了 Johnson-Cook 材料模型。由于缺乏对 MMNC 的详细机械特性,因此使用了双线性弹塑性材料模型来模拟涂层。在本研究中,进行了单参数敏感性分析,以通过与实验弹坑体积的比较来了解 SPH 模型的敏感性。双线性弹塑性材料模型的参数包括弹性模量、泊松比、屈服强度、切线模量和失效应变。对于体积分数为 35% SiC 的 Ti/SiC 金属基纳米复合材料 (MMNC),这些参数的变化范围为各自基准值的 ±5% 和 ±10%,并且可以获得不同应变率下的应力-应变曲线。这些值适用于整个测试速度范围。利用敏感性分析中的参数,结果表明,当没有实验数据时,可以提高 MMNC 的 SPH 建模精度。结果还表明,双线性弹塑性材料模型可用于高应变率下的 MMNC 涂层。
观测近地环境中的尘埃和碎片是一个具有巨大商业和科学意义的领域,对于最大限度地延长卫星的运行和商业生命周期以及降低日益增多的低地球轨道 (LEO) 宇航员的风险至关重要。为此,监测和评估粒子通量对于航天工业和依赖轨道基础设施数据产品/服务的更广泛的社会经济利益至关重要。我们设计了一种被动式太空尘埃探测器来调查低地球轨道的尘埃环境——轨道尘埃撞击实验 (ODIE)。ODIE 设计用于在低地球轨道部署约 1 年,然后返回地球分析尘埃颗粒产生的撞击特征。该设计强调能够区分与人类太空活动有关的轨道碎片 (OD) 和自然产生的毫米到亚毫米级微流星体 (MM) 群。 ODIE 由多个 Kapton 箔组成,这些箔显示出巨大潜力,可以有效保存撞击粒子的尺寸和化学细节,残留物化学可用于解释来源(OD 与 MM)。LEO 是一个恶劣的环境——原子氧的强烈腐蚀作用会损坏 Kapton 箔——需要使用保护涂层。Kapton 的常见涂层(例如 Al、SiO 2 等)对于后续分析和解释 OD 与 MM 的来源存在问题,因为它们是 MM 或 OD 的常见元素成分,或者 X 射线发射峰与用于区分 MM 与 OD 的元素的峰重叠。因此,我们建议使用钯涂层作为此应用的替代品。在这里,我们报告了钯作为 Kapton 基被动式粉尘探测器的保护涂层在暴露于原子氧和撞击时的性能。当受到撞击时,我们观察到较厚的涂层会受到影响
1 西安大学陕西省表面工程与再制造重点实验室,西安 710065 2 西安大学西安植入器械原型与优化重点实验室,西安 710065 3 西安交通大学材料力学行为国家重点实验室,西安 710049 * 电子邮件;liumingxia1121@163.com 收稿日期:2022 年 1 月 6 日/接受日期:2022 年 2 月 22 日/发表日期:2022 年 4 月 5 日 采用超高速激光熔覆-随后的激光重熔(EHLA-LR)在 2Cr13 钢基体上制备镍基涂层。详细研究了激光重熔(LR)处理对超高速激光熔覆(EHLA)涂层的形貌、微观组织、残余应力和耐腐蚀性能的影响。结果表明:EHLA-LR一体化工艺可使涂层表面粗糙度降低86%、表面致密性提高、表面平整度得到优化。EHLA-LR涂层近表面枝晶间距减小,晶粒细化,经LR处理后涂层物相变化不大。结果表明:涂层残余压应力基本保持不变,但经LR处理后残余压应力略有降低。此外,由于LR工艺提高了涂层表面致密性、细化了晶粒,EHLA-LR涂层的耐腐蚀性能优于EHLA涂层。关键词:超高速激光熔覆;激光重熔;微观组织;晶粒细化;残余应力;耐腐蚀性能
在充满挑战的跨国环境中开展研究,为您提供绝佳的职业发展机会。您将有机会在尖端技术领域树立国际声誉。通过提供灵活的工作时间和异地工作的可能性,支持个人职业发展(例如会议、高级培训)以及满足员工的个人需求对我们来说非常重要。我们高度重视工作与家庭的兼容性。有关我们的科学卓越性和 IHP 工作环境的更多信息,请访问我们的网站。IHP 已通过 TOTAL E-QUALITY 认证,为男女提供平等的工作机会,并积极追求所有性别和所有群体的平等。我们促进女性的职业发展,并强烈鼓励她们申请。符合上述标准的残疾申请人将优先于具有同等相关资格的其他候选人。其他优势:
近年大家对外泌体(外泌体)治疗疾病的相治疗疾病的相:甚至有些学者把异体的外泌:首先外泌体的萃取非常困难复:首先外泌体的萃取非常困难复,理论上必须要把长满干细胞盒子内的培养液,理论上必须要把长满干细胞盒子内的培养液,放在冷冻超高速离心机,放在冷冻超高速离心机10万转,超过,超过12个小时以上,(50-200nm),所以可以穿过所以可以穿过(血脑屏障,Bbb)已,这应该叫msc的条件培养基。至于,经由身体的需求,让干细胞在身体的微环境内