“越小越软”是强度的逆尺寸依赖性,违背了“越小越强”的原则。它通常由表面介导的位移或扩散变形引起,主要存在于一些超小尺度(几十纳米以下)的金属材料中。在这里,利用离子束辐照的表面改性,我们在更大尺寸范围(< ∼ 500 纳米)的共价键、硬而脆的材料非晶硅(a-Si)中实现了“越小越软”。它表现为从准脆性破坏到均匀塑性变形的转变,以及在亚微米级范围内随着样品体积的减小而屈服应力的降低。提出了一个硬核/超塑性壳的分析模型来解释人为可控的尺寸相关软化。这种通过离子辐照的表面工程途径不仅对于调整小尺寸非晶硅或其他共价结合非晶态固体的强度和变形行为特别有用,而且对于非晶硅在微电子和微机电系统中的实用性也具有实际意义。© 2023 由 Elsevier Ltd 代表《材料科学与技术杂志》编辑部出版。
1992 年在砂拉越的实地考察是在重要个人和组织的帮助下完成的。首先,我要衷心感谢砂拉越博物馆对我的实地研究的监督,特别是现任馆长 Peter Kedit 博士提供的实用建议和当地知识。我还要感谢其他乐于助人的博物馆工作人员,即 Tazudin Mohtar、Clement Sabang、Tuton Kaboy、Magdaline Kuih 和图书馆工作人员。砂拉越旅游协会(特别是 Rose Tan)和环境与旅游部旅游协调员 Denis Hon 提供了有关旅游的宝贵信息。我要感谢古晋的许多商业旅行社和导游,他们允许我参加 Than 长屋之旅,邀请我分享旅游餐,并分发游客调查表。我特别感谢亚洲陆上服务公司的 Ngu Ka Sen 的支持,这对我在 Nanga Stamang 的实地研究有很大帮助。
nipa sap是一种甜美的半透明饮料,起源于NIPA Palm(NYPA Fruticans)树。在砂拉越,NIPA SAP成为NIPA糖或本地称为古拉Apong的原材料。但是,NIPA SAP经历了自然发酵,从而改变了NIPA SAP的特性,包括味道,香气和质量。发酵的NIPA SAP是白色的,具有不愉快的香气和味道,这使其无法接受。因此,它不再适合制作NIPA糖。这项研究旨在确定NIPA PALM SAP从新鲜到发酵的物理化学和微生物变化。允许NIPA SAP在室温下进行自然发酵56天。在第一个星期每24小时收集样本,在随后的一周中每周一次。使用高性能液相色谱(HPLC)分析了所选的生理化学品质,而使用扩散板分析了微生物含量。新鲜的NIPA SAP显示出最高的糖(334.2±12 g/l),蔗糖作为主要糖(231.5±4.3 g/l),其次是果糖(42.1±1.2 g/L)和葡萄糖(29.7±3.2 g/L)。新鲜的NIPA SAP还具有最低的乙醇(0.08±0.03 g/L),乳酸(1.09±0.06 g/L)和乙酸(0.05±0.01 g/L)以及微生物和酵母菌浓度。后来,乙醇在第4天(9.80±0.1 g/l)开始积聚,最高峰为第21天(19.1±2.01 g/l)。微生物浓度也会改变,影响NIPA SAP的质量。由于NIPA SAP在砂拉越人民的生活方式中起着如此重要的作用,因此这项研究可以更好地了解其发酵过程的微生物学和生物化学。因此,应考虑正确处理新鲜NIPA SAP的适当计划,以确保增值产品生产的质量。
本案例研究中使用的名称和材料的呈现方式并不意味着联合国秘书处对任何国家、领土、城市或地区或其当局的法律地位,或对其边界或边界的划分及其经济制度或发展程度发表任何意见。摘录可在未经授权的情况下复制,但必须注明来源。本出版物中表达的观点不一定反映联合国人类住区规划署 (UN-Habitat) 或其成员国的观点。
摘要。用绿色氢替代工业过程所需的大量灰色氢是能源转型的挑战之一。在本研究中,从预定数量的氢气角度分析了这个问题,这些氢气将输送到难以减排的行业(钢厂和化学工业),并由为此目的而改造或专门安装的风力发电场生产。考虑到一个由十二台公用事业规模涡轮机(每台 2.3 兆瓦,总计 28 兆瓦)组成的风力发电场,结合碱性电解槽、锂离子电池和储氢系统,设计了一种混合配置的能源系统。此外,假设该工厂在特定条件下也可以接入电网,因此在过渡时期不会生产 100% 的绿色氢。该分析的具体优势在于可以获得数年的风力发电数据、电解槽的工业性能数据,其模型还考虑了由于温度、实际操作约束和可变效率导致的性能下降。还考虑了电池老化模型。对不同的工厂配置进行了技术经济分析,目的是从经济和环境的角度评估系统的性能。结果表明,以恒定的氢气流量为工厂供气是可行的,氢气平准成本 (LCOH) 为 4.95 欧元/千克,绿色指数 (GI) 约为 64%,而可能达到更高 GI (70%) 的配置则具有更高的 LCOH (5.26 欧元/千克)。
乌干达约 94% 的难民居住在城市中心以外的定居点。乌干达政府的政策目标是在每个教区都设立一所卫生中心,理想情况下,这些卫生中心应位于距离服务对象 5 公里的中心位置。然而,大多数难民社区附近的卫生中心并没有提供疫苗——通常是因为缺乏储存疫苗所需的冷藏设备。因此,偏远定居点的难民通常需要行走 5 至 30 公里才能接种疫苗,而且他们通常只能步行、骑自行车或乘坐摩的(boda boda),而这些费用可能相当于大多数难民一个月的收入。有限的交通选择给一些最容易感染 COVID-19 的人群(如老年人和患有某些疾病或残疾的人)前往遥远的疫苗接种中心带来了更大的挑战。
萨拉瓦克森林部一直是实施森林碳倡议的领导者,以打击气候变化并促进可持续的森林管理。这些举措旨在解决森林砍伐和森林退化,这是温室气体排放的主要贡献者。一个重要的里程碑是2022年5月19日《森林条例的修正案》,其中包括第70节中的碳库存的特殊规定。这项修正案有助于执行与国际标准相吻合的森林碳活动计划。为了进一步支持这些努力,从2023年1月1日起生效的森林(森林碳活动)规则是通过一系列研讨会制定的。此外,2023年1月30日批准的砂拉越森林碳活动的政策指导提供了实施这些活动并推动该州森林碳市场的框架。预计这些举措将通过碳交易为砂拉越创造新的收入来源,从而提供一种经济动力,以使森林资源获利并促进可持续实践。森林碳计划是缓解气候变化并增强砂拉越可持续森林管理的关键一步。修订森林条例,以及建立森林(森林碳活动)规则2022和政策方向,在该州开发森林碳项目中至关重要。碳交易不仅会产生收入,而且还支持当地社区和砂拉越自然资源的保护。
蔓越莓水果腐烂(CFR)是一种主要的疾病复合体,显着影响蔓越莓作物,导致大量产量损失。在过去十年中,CFR越来越有问题,尤其是在高产和新品种中,据报道损失范围从50%到100%。此外,蔓越莓行业还面临着对使用广谱杀菌剂(例如Chlorothalonil和Mancozeb)的限制,因此需要探索替代管理策略。这项研究于2021年至2024年在马萨诸塞大学 - 阿默斯特蔓越莓站进行,评估了Frac组7、9和12的新型杀菌剂。单独测试并与硫代蛋白(FRAC 11)结合了活性成分 - 苯并叶二氟,pydi lumetofen,cyprodinil和流胞菌。这些杀菌剂在降低CFR发病率和提高产量方面的效率在蔓越莓品种“ Demoranville”,“ Ben Lear”和“ Stevens”和“ Stevens”上评估,并在Bloom早期和晚期阶段进行了应用。在2021、2023和2024中观察到果腐发生率和产量的显着差异。处理含有Pydi umetofen,pydi limetofen&fludioxonil和Benzovindi Floupyr的处理,当与硫代蛋白结合使用时,始终导致较低的腐烂率和较高的产率。含有cyprodinil&fludioxonil加上阿佐昔霉素的处理,仅在2021年进行了测试,也导致腐烂的发病率和较高的产率。这些发现突出了FRAC组7、9和12的新型杀菌剂的潜力,作为CFR管理的有效替代方法。他们的使用可以使CFR管理工具包多样化,减轻杀菌剂的耐药性并减少环境影响,从而解决了增加杀菌剂法规所带来的挑战。
实施妇女地位议程是美国外交政策和国家安全的道义和战略要务。研究表明,妇女地位与国家稳定密不可分:平等程度越高的国家越繁荣、越安全和越民主;相反,性别平等程度越低则越不稳定、越腐败、越冲突。有针对性地削减妇女和女童权利的升级已被证明是动荡加剧的最早警示信号之一。了解和解决冲突中的性别动态将有助于美国实现和维护我们的国家安全优先事项。当我们通过政策和计划制度化和投资妇女地位倡议时,我们就是投资于可持续和平、国际安全和经济稳定。
摘要:在过去的几十年中,砂拉越农村地区的长屋社区已经经历了电力供应的局限性。由于砂拉越的地理,从公用电网到传输线向这些农村地区的供电也只会导致许多损失,因此利用太阳能作为主要来源的启动是有利的解决方案。将实现该领域的直流微电网系统,因为太阳能光伏系统是为Longhouse社区中电器产生电气供应的DC来源。然而,砂拉越的热带气候和地理位置,例如太阳辐射不一致,温度变化,高湿度和大雨将是实施太阳DC微电网系统的主要约束。因此,本文提出了一项有关直流微电网配置电压分布的全面研究,以研究系统的可靠性和效率。使用MATLAB Simulink设计了DC微网格模型的配置,并且还为验证目的而开发了一个实验性呈现Simulink的实验。获得的仿真和实验结果证实,与径向系统相比,具有多种源系统的环形系统的拟议配置在不同总线的直流电压分布方面更可靠,更有效。因此,根据每个总线的电压分布,提出的配置更可靠。
