随着微观粒子(m 到 nm)布朗碰撞或表面现象成为主导,自推进游泳者的设计、合成和运动控制仍然是该领域的主要挑战。一种有趣的方法是将微电子器件(例如半导体二极管)用作自推进电子游泳者(e-swimmer)。这些设备具有将运动与电子响应(如光发射)耦合的独特功能。[26-28] Velev 等人在外部电场的作用下,通过电渗机制证明了半导体二极管在空气/水界面的运动控制。[26] 此外,电场不仅提供方向控制,还可以打开和关闭这些电子游泳者的电子响应。虽然需要方向控制,但自主运动是理解集体行为的关键。一种有前途的替代方案是设计由连接到微电子器件电端子的自发化学反应驱动的自主电子游泳者。如果所涉及的氧化还原反应选择得当,可以产生足够的电位差来克服开启这些设备所需的阈值电压。在这项工作中,我们引入了这样一种化学电子游泳器,它基于 Mg 和
新兴结果表明,不受控制的宿主免疫反应会导致一种称为细胞因子释放综合征(也称为“细胞因子风暴”)的危及生命的疾病,而这是重症 COVID-19 病理的主要驱动因素。在此次大流行中,人们正致力于寻找增加对 COVID-19 并发症的易感性或抵抗力的宿主基因组因素,并将这些发现转化为改善患者护理。在这方面,据报道趋化因子受体-配体关系在重症 COVID-19 疾病发病机制及其治疗中具有潜在重要性。HIV 感染和疾病进展研究已获得了有关趋化因子受体-配体关系的宝贵基因组见解。将这些知识与新发现的与 COVID-19 相关的潜在宿主基因组因素相结合,可能使我们更全面地了解 COVID-19 患者的发病机制和治疗结果。
1 纽约大学牙科学院分子病理生物学系,纽约,纽约州 10010,美国。2 纽约大学牙科学院 NYU 疼痛研究中心,纽约,纽约州 10010,美国。3 贝尔法斯特女王大学 Wellcome-Wolfson 实验医学研究所,贝尔法斯特,BT9 7BL,英国。4 哥伦比亚大学哥伦比亚大学瓦格洛斯内外科医学院外科系,纽约,纽约州 10032,美国。5 目前所属:哥伦比亚大学瓦格洛斯内外科医学院精神病学和分子药理学与治疗学系,纽约,纽约州 10032,美国 6 东北大学药学研究生院,宫城县仙台 980-8578,日本。 7 京都大学药学研究生院,京都 606-8501,日本。 * 贡献相同且为共同第一作者 # 通讯作者 摘要
目的:肾上腺皮质癌(ACC)是一种罕见但具有侵略性的内部收蛋白肿瘤,治疗选择有限。临床前研究结合了这种癌症类型中趋化因子受体4(CXCR4)的过表达。这项研究旨在分析使用68 GA-PentixAfor进行CXCR4成像的作用,以进行ACC分期和选择CXCR4定向的内放射疗法的患者。方法:组织学证明的先进,转移的ACC患者在3±4天的时间间隔内接受了18 F-FDG PET/CT和68 GA-PENTIXAFOR PET/CT,以评估CXCR4定向的内部疗法的适用性。扫描回顾性地分析了肿瘤病变的ACC和SUV最大/平均值的视觉范围。68 Ga-Pentixafor PET与18 F-FDG PET(参考成像标准)进行了比较。与同一器官内的背景活动相比,考虑到患者的病史,先前的治疗和CXCR4表达,所有患者的患者病史,先前的治疗和CXCR4表达的适合性。结果:所有患者的病变对18 F-FDG和68 Ga-Pentixa的Petand均为阳性,被评为疾病阳性。在2例患者中(7%),68名Ga-Pentixafor PET鉴定出更多的病变,而18例F-FDG PET。 通过双追踪成像提供了5例(17%)和10例患者(33%)(33%),互补和可比较的信息。 在13例患者中(43%),与68 Ga-Pentixa的PET相比,通过18 F-FDG PET鉴定出更多的肿瘤病变。 在68 Ga-Pentixafor的SUV最大值/平均值中,恶性病变的18 F-FDG摄取量明显高(P <0.01)。在2例患者中(7%),68名Ga-Pentixafor PET鉴定出更多的病变,而18例F-FDG PET。通过双追踪成像提供了5例(17%)和10例患者(33%)(33%),互补和可比较的信息。在13例患者中(43%),与68 Ga-Pentixa的PET相比,通过18 F-FDG PET鉴定出更多的肿瘤病变。在68 Ga-Pentixafor的SUV最大值/平均值中,恶性病变的18 F-FDG摄取量明显高(P <0.01)。总体而言,有70%的患者被评为适合或可能适合CXCR4定向治疗的患者。结论:68 Ga-Pentixafor允许晚期ACC患者的CXCR4表现进行体内成像,并可以作为选择患者的伴随诊断工具,以选择潜在的CXCR4定向内部疗法。70%的晚期转移ACC患者可能
随着社会衰老的迅速发展,与衰老相关疾病的发生率显着增加,这已经迅速增加了神经退行性疾病的患病率,例如MCI和AD。MCI是健康衰老到AD的过渡阶段,认知能力下降和临床预言的程度尚未达到AD的严重程度[1]。每年有记忆力障碍临床表现的MCI患者中有10%至20%每年都会进展为AD [2,3]。 由于尚未鉴定出有效的血清标记物,因此通常使用与认知功能相关的量表来区分AD和MCI。 DNA甲基化是表观遗传学的主要组成部分,它受到环境因素的影响,导致疾病进展并提供有关病原体和疾病诊断的新方向。 这可能是未来AD诊断的最有希望的血液标记物,应该更多地研究细胞后DNA甲基化[4]。 几项研究表明,AD和MCI的发病机理受DNA甲基化的影响[5-9],但是对于同一基因的DNA甲基化,对于AD和MCI进行了比较,仍然几乎没有研究。 神经免疫性炎症在AD的发病机理中起重要作用[10],并且发现它可能在MCI阶段开发[11,12]。 趋化因子信号途径同时在星形胶质细胞和小胶质细胞中进行,这是神经炎症反应的主要部位。 因此,它是AD中神经免疫性炎症机制的重要相关途径[13-15]。每年有记忆力障碍临床表现的MCI患者中有10%至20%每年都会进展为AD [2,3]。由于尚未鉴定出有效的血清标记物,因此通常使用与认知功能相关的量表来区分AD和MCI。DNA甲基化是表观遗传学的主要组成部分,它受到环境因素的影响,导致疾病进展并提供有关病原体和疾病诊断的新方向。这可能是未来AD诊断的最有希望的血液标记物,应该更多地研究细胞后DNA甲基化[4]。几项研究表明,AD和MCI的发病机理受DNA甲基化的影响[5-9],但是对于同一基因的DNA甲基化,对于AD和MCI进行了比较,仍然几乎没有研究。神经免疫性炎症在AD的发病机理中起重要作用[10],并且发现它可能在MCI阶段开发[11,12]。趋化因子信号途径同时在星形胶质细胞和小胶质细胞中进行,这是神经炎症反应的主要部位。因此,它是AD中神经免疫性炎症机制的重要相关途径[13-15]。目前,大多数研究是在趋化因子信号通路中进行的Trem2-DAP12和CX3CL1-CX3CR1轴,它们在神经退行性疾病中起重要作用,并且可以调节认知功能和突触可塑性,尤其是在海马中[16]。CX3CL1-CX3CR1轴的 CXCR5基因与认知障碍有关[17],但其与MCI或AD的关系仍然不清楚,并且对AD和MCI中该途径中其他基因的DNA甲基化差异的研究很少。 因此,我们使用关键字来筛选KEGG途径数据库中趋化因子信号通路中的所有基因,并通过文献综述进一步选择了未在DNA甲基化中研究的基因,并检查了其CPG岛是否具有甲基化研究值。 然后筛选了七个基因(CXCL5,ADCY2,HCK,MAP2K1,AKT1,WASL,RAP1B)。 之后,为了探索七个趋化因子信号通路基因与AD和MCI的血清DNA甲基化水平的关联,并进一步筛选出可以将AD与MCI区分开的基因,我们研究了AD和MCI在Xinjiang,Chimen Jinjiang,Chiranjiang,Chimenjiang,Chiranjiang,Chimen Jianjiang,Chimenjiang,Chimenjiang,Chimenjiang,Chimenjiang,Chimenjiang,Chimenjiang,Chimen Jinjiang,Chimenjiang,Chimenjiang,Chimen Jianjiang的启动子中的血清DNA甲基化水平的关联。 筛选了AD的DNA甲基化水平显着差异的基因,并通过ALZDATA数据库验证了AD不同大脑区域的表达。CXCR5基因与认知障碍有关[17],但其与MCI或AD的关系仍然不清楚,并且对AD和MCI中该途径中其他基因的DNA甲基化差异的研究很少。因此,我们使用关键字来筛选KEGG途径数据库中趋化因子信号通路中的所有基因,并通过文献综述进一步选择了未在DNA甲基化中研究的基因,并检查了其CPG岛是否具有甲基化研究值。然后筛选了七个基因(CXCL5,ADCY2,HCK,MAP2K1,AKT1,WASL,RAP1B)。之后,为了探索七个趋化因子信号通路基因与AD和MCI的血清DNA甲基化水平的关联,并进一步筛选出可以将AD与MCI区分开的基因,我们研究了AD和MCI在Xinjiang,Chimen Jinjiang,Chiranjiang,Chimenjiang,Chiranjiang,Chimen Jianjiang,Chimenjiang,Chimenjiang,Chimenjiang,Chimenjiang,Chimenjiang,Chimenjiang,Chimen Jinjiang,Chimenjiang,Chimenjiang,Chimen Jianjiang的启动子中的血清DNA甲基化水平的关联。筛选了AD的DNA甲基化水平显着差异的基因,并通过ALZDATA数据库验证了AD不同大脑区域的表达。
Christina Guo, Adam Sharp, Bora Gurel, Mateus Crespo, Ines Figueiredo, Suneil Jain, Ursula Vogl, Jan Rekowski, Mahtab Rouhifard, Lewis Gallagher, Wei Yuan, Suzanne Carreira, Khobe Chandran, Alec Paschalis, Ilaria Colombo, Anastasios Stathis, Claudia Beren, George Ruth, George Good Addle, Karen E. Swales, Jason Malia, Denisa Bogdan, Crescens Tiu, Reece Caldwell, Caterina Aversa, Ana Ferreira, Antje Neeb, Nina Tunariu, Daniel Westaby, Juliet Carmichael, Maria de los Dolores Fenor de la Maza, Christina Yap, Ruth Bad Matthews, Hannah Bad Matthews, Toby Holly, Holly Parson, Ruth Parson naes, Penny Flohr, Jesus Gil, David Waugh, Shaun Decordova, Anna Schlag, Bianca Calì, Andrea Alimonti & Johann S. de Bono
所有生物都通过其中发生的过程和关系互连。是器官的相互依赖性,形成了整体复合物。在进化过程中,某些物种中的免疫系统已被完善。但是,如果过敏或异物渗透,可能会造成严重损害。免疫系统是一个障碍,可保护生物体免受外部和内部影响。人体的免疫反应是人体最基本和最重要的功能之一。当化学或生物学性质的看似无害的抗原进入人体时,免疫系统会激活抗体以防止抗原在体内繁殖。作为炎症的一部分,动员免疫系统,免疫细胞检测到对血管和淋巴系统损害的程度和严重程度。随后,通过免疫能力细胞的反应清除或阻止过敏原扩散。
积极移动的颗粒的集体可以自发地分成稀释和致密的相 - 一种令人着迷的现象,称为运动性诱导的相分离(MIPS)。mips对于无方向性偏置的随机移动颗粒进行了充分研究。然而,许多形式的活性物质表现出集体趋化性,沿着化学梯度的定向运动可以产生,该化学梯度可以产生自己。在这里,使用理论和模拟,我们证明了集体趋化性与MIPS强烈竞争 - 在某些情况下,会阻止或完全抑制相位分离,或者在其他情况下,产生了根本性的新动态不稳定性。我们建立了描述这项竞争的原则,从而有助于揭示和阐明执行趋化性的活性物质系统的丰富物理学,从细胞到机器人。
摘要●目的:研究自噬抑制剂3-甲基趋化(3-MA)在糖尿病小鼠模型(DM)和潜在机制上的作用。●方法:将雄性C57BL/6J小鼠随机分为正常对照组(NC组)和DM组。dm是通过多种低剂量腹膜内注射链蛋白酶(STZ)60 mg/kg●连续5天诱导的。dm小鼠随机细分为未处理的组(DM组),3-ma(10 mg/kg●dm gavage)治疗组(DM+3-ma组)和氯喹(CQ; 50 mg/kg通过腹膜内注射)治疗组(DM+CQ组)。每周记录空腹血糖(FBG)水平。在实验结束时,收集了视网膜样品。The expression levels of pro-apoptotic proteins cleaved caspase-3, cleaved poly ADP-ribose polymerase 1 (PARP1) and Bax, anti-apoptotic protein Bcl-2, fibrosis- associated proteins Fibronectin and type 1 collagen α1 chain (COL1A1), vascular endothelial growth factor (VEGF), inflammatory factors interleukin (IL)-1β和肿瘤坏死因子(TNF)-α以及自噬相关蛋白LC3,
控制细胞的迁移并影响肿瘤免疫微环境的组成(4)。一些趋化因子,例如CXCL9,CXCL10,CXCL11,CXCL16,促进了一种免疫抑制环境,可改善直流活化并将T细胞转移到肿瘤上(4,5)。相反,CCL2,CCL5,CXCL1,CXCL8和CXCL12可以通过RT诱导,并且具有募集抑制性免疫细胞和抑制效应T细胞的相反作用,并且通常与治疗结果不良相关(6-8)。鳞状细胞癌抗原1(SCCA1),由serpinb3基因基因座编码,现在称为serpinb3,是一种高度保守的半胱氨酸蛋白酶抑制剂,与溶酶体泄漏后与溶酶体蛋白酶相互作用并防止细胞死亡(9)。我们最近证明了Serpinb3还通过预防溶酶体诱导的RT诱导的细胞死亡来保护神经肿瘤细胞(10)。在许多癌症中,serpinb3/scca(用于测量循环serpinb3的基于Eli-sa的临床测定仍称为“ SCCA”)在肿瘤或癌症患者的循环中高度表达