美国宇航局喷气推进实验室是一家世界知名的机构,以其在深空网络上的工作而闻名,该网络负责处理行星际航天器任务,并将遥测数据与太空平台和地面跟踪站连接起来。先进且高度可靠的架构对其工作至关重要。动态系统一直是 JPL 的长期合作伙伴,也是该实验室成功不可或缺的一部分。
同样,载人航天任务也依赖于 L3Harris 通信和遥测系统。水星宇航员使用 L3Harris 无线电技术与跟踪站进行通信。L3Harris 设备在阿波罗飞船和登月舱中表现完美。阿波罗任务还依靠 L3Harris 天线系统帮助回收团队在溅落后定位指令舱。每架航天飞机上都搭载了 L3Harris 技术,要么通过机载计算机和电子设备提供直接任务支持,要么作为航天器有效载荷的一部分。国际空间站依赖 L3Harris 的机载音频/视频分发技术,并使用我们的可重构软件定义无线电技术来推进通信技术。
本标准主要用于空间系统设施的设计和施工合同。这些要求适用于所有相关设施,包括但不限于发射场、跟踪站、数据处理室、卫星控制中心、检查站、航天器或助推器装配大楼以及任何相关的固定或移动结构,这些结构用于容纳电气和电子设备。这些要求不适用于 Lon9 Hall/战术通信系统设施(参见 MIL-STD-188-124A)。用于直接支持航天器的地面支持设备 (AGE) 的技术要求包含在 MIL-STD-1541 中。安装在地面设施(不是设施的一部分)中的设备的技术要求包含在 MIL-STD-461 中。
第二天,STS-93 机组人员第三次登上哥伦比亚号。由于跟踪站通信系统出现问题,倒计时延迟了 7 分钟,但在 1999 年 7 月 23 日美国东部时间凌晨 12:31,哥伦比亚号与钱德拉一起升空。“就在升空时,我看到警告和警示面板上闪烁,一盏灯亮了又灭了,”任务专家斯蒂芬·霍利回忆道。3 航天器的一个电动总线电压下降导致两个主发动机的控制器关闭。自动切换到冗余控制器可以防止任何性能中断,但备用控制器的故障将迫使柯林斯尝试航天飞机的
空间无线电导航 空间 GPS 接收机服务 在空间任务中使用 GPS 接收机正成为一种相当普遍的技术,主要应用包括: – 实时轨道测定服务:接收机为机载和地面站提供三维位置和速度信息,从而提高航天器的自主性并简化地面跟踪和测距部分。例如,可在机上使用实时定位来计算本地轨道框架坐标,从而提高姿态指向精度而非上行滤波位置。机载位置测定结果也可下载到地面站,以监测航天器轨道。这一特性在星座的情况下尤其有用,因为避免定位系统饱和需要高成本地复制地面跟踪站。