摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,以利用测量的信息形式,这是协同迭代所必需的。为提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过对模型条件估计的加权组合来获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优异的性能。
摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,以利用测量的信息形式,这是协同迭代所必需的。为提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过对模型条件估计的加权组合来获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优异的性能。
摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,以利用测量的信息形式,这是协同迭代所必需的。为提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过对模型条件估计的加权组合来获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优异的性能。
摘要:网络化多传感器用于解决机动目标跟踪问题。为了避免非线性动态函数的线性化,并获得更准确的机动目标估计,提出了一种用于机动目标跟踪的新型自适应信息加权共识滤波器。利用无味变换计算伪测量矩阵,以利用测量的信息形式,这是共识迭代所必需的。为了提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在每个动态模型的相邻节点之间应用信息加权共识协议。基于多个模型的后验概率,通过模型条件估计的加权组合获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网络估计一致性方面具有优异的性能。
摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,利用测量的信息形式,为协同迭代提供必要的信息。为提高机动目标跟踪精度,并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过模型条件估计的加权组合获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优越的性能。
- 通过将高速摄像机与定位雷达一起使用,可以提高定位雷达的跟踪精度。 ・利用高速摄像机获取的事件信息(分离、自毁等),对定位雷达的接收信号进行信号处理,可以检测导弹自毁时产生的飞行物碎片。 - 可以破坏或分离特征,例如传播。 - 检查目标相关处理方法,该方法被认为是目标分离期间跟踪不稳定的原因。 - 考虑一种能够准确检测飞行碎片扩散的信号处理方法。
徐亚军 民航飞行学院 航空工程学院 四川广汉 genius98@126.com 摘要——空中防撞系统是保证飞行安全的重要措施,而防撞的难点之一就是监视的精确性和可靠性,因此,有必要发展一套独立可靠的空对空监视系统。本文提出了一种TCAS/ADS-B综合监视防撞系统。该系统在TCAS原有的防撞功能基础上,融入了ADS-B广播信息,利用现有的统计模型和数据融合算法,得到最优的融合航迹估计。仿真结果表明,该综合系统可以提高TCAS跟踪精度,提高监视精度和防撞可靠性。
捕获、对准与跟踪系统是机载激光通信的重要组成部分,是通信链路正常的前提和保障。为了解决机载环境下激光通信链路的自动跟踪问题,实现终端间光束的快速捕获、对准与跟踪。本文提出了采用步进电机作为控制伺服系统、四象限探测器作为探测单元自动跟踪的方法。脉宽调制信号控制步进电机转速,结合四象限探测器上光斑的位置分布,实现高精度光束跟踪。在此基础上进行了室内模拟实验。经过多次实验,跟踪精度优于2.5μrad,说明该系统可以应用于机载激光通信,验证了该方法对机载激光通信具有良好的自动跟踪性能。
针对光伏发电光电跟踪精度低的问题,提出并设计了一种基于图像识别的新型太阳跟踪传感器。该传感器可直接输出其与太阳的角度偏差,并详细分析了其机械结构和工作原理。采用高精度相机采集投影仪表面两个缝隙的图像,利用Hough变换对光缝图像进行识别,求出两个缝隙的线性方程后,求出交点坐标,实现太阳高度角和方位角的计算。对Hough变换方案进行了改进,利用缝隙的骨架图像代替边缘图像,改进方案经验证可有效提高检测精度。利用标定测试板对传感器进行测试,实验结果表明,该方案可实现方位角和高度角的测量,精度可达0.05°,能够满足光伏发电太阳跟踪及多种光电跟踪实现对检测精度的要求。
摘要 — 物理人机交互 (pHRI) 在机器人中起着重要作用。为了使人类操作员能够轻松适应与机器人的交互,应实现 pHRI 中的最小交互力。本文提出了一种 pHRI 框架,使机器人能够自适应地调节其轨迹,以最小化交互力和较小的位置跟踪误差。首先通过性能评估指数更新的交互力来调整机器人的轨迹。然后,基于自回归 (AR) 模型预测人手运动以进一步调整轨迹。第三,开发了一种自适应阻抗控制方法,使用表面肌电图 (sEMG) 信号更新机器人阻抗控制器中的刚度,以实现机器人与环境的顺从交互。该方法允许人类操作员通过交互力、手部运动和肌肉收缩与机器人交互。通过研究所提出方法的性能,交互力降低,并实现了良好的位置跟踪精度。对比实验证明了所提出方法的增强性能。