Entegris ® 、Entegris Rings Design ® 和其他产品名称是 Entegris, Inc. 的商标,如 entegris.com/trademarks 所列。所有第三方产品名称、徽标和公司名称均为其各自所有者的商标或注册商标。使用它们并不表示商标所有者与它们有任何关联、赞助或认可。
n近年来,使用CMOS兼容的过程制造硅光子IC(SI PIC)已使具有光学和电函数性具有成本效益的硅芯片的开发。1 - 5)这项技术是光子学 - 电力融合的高性能平台,可在各种行业提供有希望的应用。6 - 9)为增强硅光子学的整合和功能密度,已提出异质和杂交整合方法,以将各种材料系统与单个包装中的各种材料系统相结合。10,11)但是,基于PIC的模块的总成本受到测试,组装和包装过程的影响,这可能占常规INP PIC模块的总成本的80%。12,13)仅产品测试可贡献总成本的约29%,14)对于较不发达的硅光子技术技术,该图可能会增加到约60% - 90%。15)因此,减少测试,组装和包装成本对于降低基于SI PIC模块的整体成本至关重要。先前的研究采用了两种主要策略来降低测试成本:利用增强的测试结构,16)并增强了测试过程的自动化水平。14)在图片中,一种普遍的测试方法涉及信号通过具有不平衡分裂比的定向耦合器(例如99:1)。这种构造允许99%的信号正常通过波导,而1%的信号被击倒到测试分支。21)17)开发信号通常通过表面耦合器耦合到测试设备,从而促进了自动晶圆级测试系统用于原位和筛选测试的利用。18)然而,在组装和包装阶段,表面光栅耦合器(GCS)在带宽,极化和效率方面遇到限制。19)相比之下,利用点尺寸转换器(SSC)的边缘耦合提供了优点,例如带宽的带宽,降低极化敏感性和增强的耦合效率。20)然而,边缘耦合预先挑战,例如与SSC相关的较大足迹,固定的耦合位置,有限的对齐耐受性和耦合方面的严格规范。
摘要:功率转换效率(PCE)是评估太阳能电池的输出特性的主要参数。抗反射涂层(ARC)起着抑制太阳能电池表面的光损失的作用,从而增强了PCE。本文研究了晶体硅(C-SI)太阳能电池上双层抗反射涂层(DLARC)的不同材料。使用PV Lighthouse软件的晶圆射线示踪剂完成模拟硅太阳能电池的总体过程方法。检查了具有不同类型的双层的五个光捕获(LT)方案。c-Si的最大电势光电密度(J MAX)用ARC显示出比参考c-Si(无弧)的J max的改善。lt方案II:SIO 2 /TIO 2产生J Max的最大值,其中该值为42.20 mA /cm 2。这表明方案II具有最高的J MAX增强功能,值为10.01%。这一发现意味着DLARC适用于减少光损失,因此有效地提高了太阳能电池的性能。关键字:光伏,太阳能电池,抗反射涂层,光捕获,射线跟踪1。简介
表1显示了HS-8005系列阵容。为了减少划痕,日立化学化学已经开发了各种具有优化粒径和分布的产品。使用HS-8005-X3,抛光划痕可以减少到HS-8005的1/10或更少。我们建立了生产技术,以精心控制粒度和陶瓷颗粒的分布,以提供稳定的优质产品,并拥有陶瓷泥浆市场的全球最高份额。为了满足进一步减少刮擦的要求,Hitachi Chemical以NC系列形式开发了超细颗粒,以进行下一代浆液。虽然将常规的陶瓷颗粒粉碎以进行微插曲,但NC系列颗粒的大小是通过晶体生长法的泥浆,由于大尺寸颗粒而导致的划痕最小化。图3显示了HS-NC和HS-8005的外观。HS-NC是一种超细,透明的纳米级粒子。
pyrochlore氧化物由于其阳离子电荷和阴离子缺乏效率而被认为是各种电化学应用的活性候选物。同时,pyrochlore的阳离子取代是改善电极材料催化活性的关键参数。在此背景下,本文旨在合成二氧化甲氧化物氧化物氧化物氧化物纳米颗粒(BI 0.6 y 1.4 SN 2 O 7; byso nps),并构建抗抗毒性氯丙嗪(CHPMZ)的电化学传感器。通过共沉淀技术进行催化剂,然后进行热处理。分析方法,例如P-XRD,FT-IR,TGA和XPS,确认了Bi3þ的成功取代。通过Fe-SEM和TEM技术分析了准备的催化剂的形态,这表明纳米颗粒的大小为⁓20E 30 nm。从CV结果中,阳离子的取代增强了CHPMZ的电催化氧化,这是由于固有活性增强而具有较大大小阳离子的替代性和pyrochlore结构的阴离子缺乏效率。此外,计算出BYSO/SPCE上CHPMZ的异质速率常数为4.49 10 3 cm/s,这表明BYSO/SPCE上CHPMZ的氧化是准可逆的。用BYSO NPS修饰的电极显示较宽的线性范围(0.01 E 58.41 m m,78.41 E 1158 m m),高灵敏度(1.03 m A/ m m/ cm/ cm 2),低检测极限为3 nm。修改的电极显示出良好的选择性,可重复性和良好的稳定性,可检测CHPMZ。©2022 Elsevier Ltd.保留所有权利。此外,构造的传感器在人类血清和尿液样品中恢复良好的实践分析中显示出令人鼓舞的结果。
系统,人工智能机构间工作组将致力于将联合国的伦理和技术部分结合起来,为当前和未来全系统在人工智能方面的努力奠定坚实基础,以确保尊重人权并加快实现可持续发展目标。人工智能机构间工作组将通过汇集联合国系统在人工智能方面的专业知识来实现这一目标,特别是支持 CEB 和 HLCP 关于人工智能伦理的工作流以及支持能力发展的战略方针和路线图,同时确保在适当情况下并在工作组范围内对各种人工智能相关的新兴技术、数据举措和授权流程进行合作、协调和贡献,以避免重复并确保协同作用、合作和协调。工作组还将根据需要在其活动中寻求不同利益攸关方团体的建议和参与,以从他们的专业知识中受益。
ARR 年收入要求 BPA 博纳维尔电力管理局 CREZ 竞争性可再生能源区 DCRF 折旧资本回收率 DOE 美国能源部 EIA 能源信息署 ERCOT 德克萨斯州电力可靠性委员会 EUE 预期未服务能源 FERC 美国联邦能源管理委员会 GW 吉瓦 HVAC 高压交流电 HVDC 高压直流电 IGBT 绝缘栅双极晶体管 IREZ 跨区域可再生能源区 ISO-NE 新英格兰独立系统运营商 kV 千伏 LCC 线路换向转换器 LCOE 平准化能源成本 LMP 位置边际价格 MISO 中大陆独立系统运营商 MOSFET 金属氧化物半导体场效应晶体管 MW 兆瓦 MWh 兆瓦时 NOPR 拟议规则制定通知 NREL 国家可再生能源实验室 NTP 研究 国家输电规划研究 NYISO 纽约独立系统运营商 PJM PJM 互连 ROW 通行权 SPP 西南电力池 VSC 电压源转换器 WECC 西部电力协调委员会WEIM 西部能源不平衡市场
摘要 跨虚拟分析 (XVA) 是沉浸式分析和可视化分析领域的一个新研究领域。目前,现实-虚拟连续体中的各种异构设备以及相应的视觉隐喻和分析技术已面世。XVA 的目标是实现使用过渡和协作界面无缝集成不同设备并支持多个用户的可视化分析。在本文中,我们将仔细研究 XVA,并分析现有工作以概述其当前状态。我们对相关文献进行了分类,这些文献涉及通过互连现实-虚拟连续体中的不同阶段来建立跨虚拟性的方法,以及在不同阶段之间进行过渡和协作的技术。我们对当前 XVA 系统中采用的可视化和交互技术提供了见解。我们报告了评估此类系统的方法,并分析了此类系统可用的领域。最后,我们讨论了 XVA 中的开放挑战,为未来的研究指明了方向。