深度神经网络(DNN)越来越多地整合到LiDAR(灯光检测和范围)的自动驾驶汽车(AVS)的感知系统(AVS),在对抗条件下需要稳健的性能。一个紧迫的担忧是LiDAR SPOOFEF攻击所带来的挑战,在该攻击中,攻击者将假物体注入LiDAR数据中,导致AVS误解了周围的环境并做出错误的决定。许多经常出租防御算法主要取决于感知输出,例如边界框。但是,这些输出在本质上受到了限制,因为它们是由从自我车辆的特定视图中获得的一组限制点产生的。对边界框的依赖是这种基本约束的体现。为了克服这些局限性,我们提出了一个新的框架,称为采用(基于名称的基于d eTection o n p oInt级的t emporal一致性),该框架基于连续帧的时间一致性,并基于点簇的相干性来量身定量测量跨连续帧的时间一致性。在我们使用Nuscenes数据集的评估中,我们的算法有效地反驳了各种激光局部攻击,达到了低(<10%)的假阳性比率(<10%)的假阳性比(> 85%)真实的正比,超过了现有的现有的现有的先进防御方法,CARLO和3D-TC2。此外,采用在各种道路环境中表现出有希望的准确防御潜力。
主要的障碍是缺乏广泛认可的公共数据源,这些数据源可以作为其主权方法的资产管理者的基础,从而确保跨解释的一致性,同时保持共同的方法论基础。相比之下,公司资产类别具有许多这样的来源,包括基于科学的目标计划,过渡途径计划和气候行动100+。今年,评估主权气候相关的机会和风险(ASCOR)项目发布了第一个国家数据库。IIGCC与市场从业人员进行了一个研讨会,专注于主要基于该数据库的准则,以及气候行动跟踪器(CAT)和气候变化绩效指数(CCPI)。作为主权资产的投资者,AXA IM积极参加了这些研讨会,从而发表了IIGCC在2024年中期评估净零净值的第一个准则。
Transgrid 还指出,目前正在实施 ISF 成本回收方法,并希望讨论一些潜在的意外后果。尽管 TNSP 每年能够收回预测成本,但必须管理大量不稳定的现金流(估计每年数亿美元),这可能会对融资能力状况产生重大影响。1 这一问题是由实际系统强度支付可能因市场条件的变化而每月发生重大波动所致。与预测成本的每月固定回收(通过年度输电定价获得)相比,这种波动将导致每月回收金额大幅超过或低于预期。如果回收金额大幅低于预期,即系统强度支付在一个月或一个季度内大幅高于预测金额,这将对 Transgrid 的信用指标和债务契约要求产生重大影响。
单色仪是一种高品质的干涉滤光片,放置在视野中时,可产生彩色光应力图案的单色光图像。单色光在光应力测试中有两个主要应用:(1) 观察高应力梯度区域中的应力带(在白光下,彩色图案在极高应力水平下会变暗),以及 (2) 光应力图案的黑白摄影。单色仪可以手持,也可以安装在特殊外壳中,以便连接到摄像机镜头。
将基因组对准共同坐标是pangenome分析和构建的核心,但在计算上也很昂贵。多序列最大唯一匹配(多-MUMS)是用于核心基因组比对的指南,有助于构架和解决多重比对问题。我们介绍了Mumemto,该工具可在大型pangenomes中使用多个粉刺和其他匹配类型。mumemto al-lows用于可视化同义,揭示了异常的组件和脚手架,以及高光pangenome保守和结构变化。Mumemto在25.7小时内使用320个人类基因组组件(960GB)计算多个Mums,并在几分钟内使用800 GB的记忆和数百多个真菌基因组组件计算。mumemto在C ++和Python中实现,并在https:// github上可用。com/vikshiv/mumemto。