感谢 Yabra Muvdi 提供的出色研究协助,他创建并估算了分类算法,并感谢 Miaomiao Zhang 和 Kelsey Shipman 为数据分析提供支持。Hansen 非常感谢 ERC Consolidator Grant 864863 的资金支持,感谢伦敦政治经济学院 STICERD 博士研究基金和英联邦奖学金委员会的 Lambert 的资金支持,感谢 Smith Richardson 和 John Templeton 基金会的 Bloom 的资金支持,感谢 Templeton 基金会和芝加哥大学布斯商学院的 Davis 的资金支持,感谢哈佛商学院的 Sadun 的资金支持。本文附带的精选可视化和数据可在 www.WFHmap.com 上找到。本文表达的观点为作者的观点,并不一定反映美国国家经济研究局的观点。
在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像
类脑计算是借鉴脑科学基本原理,打破 “ 冯诺依曼 ” 架构束缚的新型计算技术。本研究组将从理论和器件两个方向对类脑计算展开协同 研究。 理论方面:研究类脑计算架构、模型和算法,探索基于类脑计算的类脑智能的基础理论;借鉴神经元模型、神经环路传导、神经编码 及认知、学习、记忆、决策等神经机制,逐步建立和完善类脑处理信息处理的数学 / 计算原理和模型;构建类脑计算和智能的统一理论 框架。为类脑计算器件及系统的发展提供理论基础。 器件方面:基于新材料和新技术,研究新型高性能类脑神经器件,解决一致性差、可靠性差、规模化难等痛点;研究基于类脑神经器 件的网络架构,构建大规模阵列,开展外围电路的研发与设计;研究基于新型类脑器件的感知和计算架构,发展感存、存算、感存算 一体系统。
脑电信号具有不易伪装、可携带、无侵入等特点,在情绪识别中被广泛应用。然而由于个体差异的存在,不同受试者的同一种情绪状态下的脑电信号数据分布会存在一定的差异。传统的情绪识别方法为了得到对新受试者分类效果良好的模型,需要收集大量新受试者的标记数据,但这往往不现实。本研究针对跨受试者脑电情绪分类提出了一种迁移判别字典对学习(TDDPL)方法。TDDPL方法将不同受试者的数据投影到领域不变子空间中,基于最大均值差异(MMD)策略构建迁移字典对学习。在子空间中,TDDPL学习共享的综合字典和分析字典,搭建从源域(SD)到目标域(TD)的判别知识桥梁。通过最小化每个子字典的重构误差和类间分离项,学习到的合成字典具有判别性,而学习到的低秩编码具有稀疏性。最后,在 TD 中,基于分类器参数、分析字典和投影矩阵构建判别分类器,而无需计算编码系数。在 SEED 和 SEED IV 数据集上验证了 TDDPL 方法的有效性。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月16日发布。 https://doi.org/10.1101/2024.01.15.575646 doi:biorxiv Preprint
摘要:在过去十年中,我们一直使用双盲调查技术和随机抽样技术,收集了 20 个国家/地区 10,000 多个组织的管理数据。平均而言,我们发现,在制造业中,美国、日本和德国的公司管理得最好。巴西、中国和印度等发展中国家的公司往往管理不善。按照国际标准,美国的零售公司和医院也管理得很好,尽管美国的学校管理得比其他几个发达国家的学校差。我们还发现,每个国家和每个行业的组织在管理实践方面存在很大差异,这反映了这些行业绩效分布的异质性。与这种差异相关的一个因素是所有权。政府、家族和创始人拥有的公司通常管理不善,而跨国、分散股东和私募股权拥有的公司通常管理良好。产品市场竞争越激烈,工人技能越高,管理实践就越好。监管较少的劳动力市场与激励管理实践(如基于绩效的晋升)的改善有关。
BrainWAVE:一种跨物种无创刺激脑节律的灵活方法 缩写标题 BrainWAVE:无创刺激脑节律 作者及所属机构 Matthew K. Attokaren †1 、Nuri Jeong †1,2 、Lou Blanpain 1,2 、Abigail L. Paulson 1 、Kristie M. Garza 1,2 、Ben Borron 1 、Michael Walelign 1 、Jon Willie 3 、Annabelle C. Singer* 1,2 1. 佐治亚理工学院和埃默里大学库尔特生物医学工程系,美国佐治亚州亚特兰大 2. 埃默里大学神经科学研究生课程,生物和生物医学科学研究生部,美国佐治亚州亚特兰大 30322 3. 华盛顿大学神经外科、生物医学工程、精神病学、神经科学和神经病学,密苏里州圣路易斯 63110 †同等贡献 作者贡献 MKA、LB、ALP、KMG、BB、MW 和 ACS 设计研究、开发方法并贡献未发表的试剂/分析工具;MKA、ALP、LB、KMG、BB、NJ、JW 收集并分析数据;MKA、NJ、ACS 构思并撰写手稿;所有作者阅读并编辑手稿;JW 和 ACS 指导研究。 * 通讯地址为 asinger@gatech.edu 图表数量:5
基于脑电信号和解码大脑活动的病理诊断对于理解神经系统疾病具有重要意义。随着人工智能方法和机器学习技术的进步,准确的数据驱动诊断和有效治疗的潜力显着增长。然而,将机器学习算法应用于现实世界的数据集在多个层面上提出了不同的挑战。标记数据的稀缺性,特别是在低水平场景中,由于招募成本高,真实患者队列的可用性有限,凸显了扩展和迁移学习技术的重要性。在本研究中,我们探索了一个现实世界的病理分类任务,以突出数据和模型扩展以及跨数据集知识转移的有效性。因此,我们观察到通过数据扩展可以获得不同的性能改进,这表明需要仔细评估和标记。此外,我们确定了可能的负转移挑战,并强调了一些关键成分对克服分布偏移和潜在的虚假相关性并实现正转移的重要性。当可用的标记数据量较少时,通过使用源数据集 (TUAB) 中的知识,我们发现目标模型在目标 (NMT) 数据集上的性能有所提高。我们的研究结果表明,小型通用模型(例如 ShallowNet)在单个数据集上表现良好,而大型模型(例如 TCN)在从大型多样化数据集进行迁移和学习方面表现更好。
和许多研究领域的情况一样,脑机接口 (BCI) 领域数据共享仍然很少,尤其是在被动 BCI 领域——即基于从脑部测量估计的用户心理状态实现隐性交互或任务调整的系统。此外,该领域的研究目前面临一个重大挑战,即解决脑信号变异性,例如跨会话变异性。因此,为了在该领域发展良好的研究实践,并使整个社区能够联合起来进行跨会话估计,我们创建了第一个关于跨会话工作量估计的被动脑机接口竞赛。本次竞赛是第三届国际神经人体工程学会议的一部分。数据是从 15 名志愿者(6 名女性;平均 25 岁)获得的脑电图记录,他们进行了 3 次多属性任务组合 II (MATB-II) 测试,每次测试间隔 7 天,每场测试有 3 个难度级别(伪随机顺序)。数据(训练和测试集)与 Matlab 和 Python 玩具代码一起在 Zenodo 上公开提供(https://doi.org/10.5281/zenodo.5055046)。到目前为止,该数据库的下载次数已超过 900 次(2021 年 12 月 10 日所有版本的独立下载次数:911)。来自 3 大洲的 11 个团队(31 名参与者)提交了他们的作品。表现最好的处理流程包括基于黎曼几何的方法。虽然结果优于调整后的随机水平(对于 3 类分类问题,α 为 0.05,结果为 38%),但准确率仍然低于 60%。这些结果清楚地强调了跨会话估计的真正挑战。此外,它们再次证实了黎曼方法对 BCI 的稳健性和有效性。相反,三分之一的方法(4 个团队)基于深度学习获得了随机水平结果。与传统方法相比,这些方法在本次比赛中没有表现出更优的结果,这可能是由于严重的过度拟合。然而,这次比赛是共同努力解决 BCI 变异性并促进包括可重复性在内的良好研究实践的第一步。
和许多研究领域的情况一样,脑机接口 (BCI) 领域数据共享仍然很少,尤其是在被动 BCI 领域——即基于从脑部测量估计的用户心理状态实现隐性交互或任务调整的系统。此外,该领域的研究目前面临一个重大挑战,即解决脑信号变异性,例如跨会话变异性。因此,为了在该领域发展良好的研究实践,并使整个社区能够联合起来进行跨会话估计,我们创建了第一个关于跨会话工作量估计的被动脑机接口竞赛。本次竞赛是第三届国际神经人体工程学会议的一部分。数据是从 15 名志愿者(6 名女性;平均 25 岁)获得的脑电图记录,他们进行了 3 次多属性任务组合 II (MATB-II) 测试,每次测试间隔 7 天,每场测试有 3 个难度级别(伪随机顺序)。数据(训练和测试集)与 Matlab 和 Python 玩具代码一起在 Zenodo 上公开提供(https://doi.org/10.5281/zenodo.5055046)。到目前为止,该数据库的下载次数已超过 900 次(2021 年 12 月 10 日所有版本的独立下载次数:911)。来自 3 大洲的 11 个团队(31 名参与者)提交了他们的作品。表现最好的处理流程包括基于黎曼几何的方法。虽然结果优于调整后的随机水平(对于 3 类分类问题,α 为 0.05,结果为 38%),但准确率仍然低于 60%。这些结果清楚地强调了跨会话估计的真正挑战。此外,它们再次证实了黎曼方法对 BCI 的稳健性和有效性。相反,三分之一的方法(4 个团队)基于深度学习获得了随机水平结果。与传统方法相比,这些方法在本次比赛中没有表现出更优的结果,这可能是由于严重的过度拟合。然而,这次比赛是共同努力解决 BCI 变异性并促进包括可重复性在内的良好研究实践的第一步。