光学非转录表现为相反的激发方向的光的传播差异。非重生光学器件传统上是通过基于法拉第旋转的相对较大的组件(例如光学隔离器)实现的,从而阻碍了光学系统的微型化和整合。在这里,我们通过跨表面的自由空间非偏置传输,该跨表面由由二氧化硅与二氧化钒杂交的二维纳米孔阵列组成(vo 2)。这种效果来自谐振器支持的MIE模式之间的磁电耦合。纳米孔子的非转化响应无需外部偏见而发生;取而代之的是,互惠因触发vo 2相变的入射光即以一个方向的速度而损坏。非偏置传输是在λ= 1.5 µm附近的电信范围内覆盖100 nm以上的宽带。每个纳米架单位电池的体积仅占据〜0.1λ3,跨表面厚度的测量约为半微米。我们的自偏纳米唱片剂在150 w/cm 2或每纳米甲孔子的速度上表现出非股骨的强度下降到非常低的强度。我们估计皮秒级传输降落时间和亚微秒尺度的传输升高。我们的示范将低功率,宽带和无偏见的光学非转录带给纳米级。
。CC-BY 4.0 国际许可,根据未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2023 年 5 月 8 日发布。;https://doi.org/10.1101/2022.10.31.514582 doi:bioRxiv 预印本
摘要:多发性骨髓瘤 (MM) 已成为下一个最有可能接受细胞免疫治疗的肿瘤或血液病。大部分注意力都集中在 B 细胞成熟抗原 (BCMA) 上,它是骨髓瘤细胞上独特的细胞表面蛋白,可用于单克隆抗体、抗体药物偶联物 (ADC)、T 细胞重定向双特异性分子和嵌合抗原受体 (CAR) T 细胞靶向。BCMA 是肿瘤坏死因子受体 (TNFR) 超家族的成员,可结合两种配体 B 细胞活化因子 (BAFF) 和增殖诱导配体 (APRIL),并介导血浆和 MM 细胞的生长和存活。有趣的是,另一个 TNFR 超家族成员跨膜激活剂和 CAML 相互作用蛋白 (TACI) 也结合相同的配体,并在正常血浆和恶性 MM 细胞中发挥与 BCMA 大致重叠的作用。在本文中,我们回顾了 TACI 的生物学,重点介绍其在正常 B 细胞和浆细胞以及恶性 MM 细胞中的作用,并讨论了将 TACI 作为 MM 免疫疗法潜在靶点的各种方法。
Tyrobp TMD在膜上旋转蓝色。从T18和T25控制质粒获得的颜色背景来自偶然的细胞质结合。b)与空质粒相比,相对强度的中值,四分位数和范围值。在不同配置下对X-GAL滴的半定量分析(T18/T25 N = 99; ZIP :: T18/ZIP :: T25 N = 81; TREM2TMD :: T18/Tyrobp TMD :: T25 :: T25 N = 57)。25
神经营养受体参与了脑发育和神经塑性的调节,因此可以作为抗癌和中风恢复药物,抗抑郁药等的靶标。需要阐明各种状态下TRK蛋白结构域在各种状态下的结构,以允许合理的药物设计。然而,关于trk受体的跨膜和叶膜结构域的构象知之甚少。在本研究中,我们采用NMR光谱来解决脂质环境中TRKB二聚体跨膜结构域的结构。我们使用诱变并确认该结构对应于受体的活性状态。随后研究TRKB与抗抑郁药氟西汀的相互作用和抗精神病药物氯丙嗪提供了一种明确的自谐模型,描述了氟西汀通过与其跨膜结构结合而激活受体的机制。
摘要:在电缆中的绝缘层的交联聚乙烯(XLPE)的广泛使用可能归因于其出色的机械和介电性能。为了定量评估热老化后XLPE的绝缘状态,建立了加速的热老化实验平台。极化和去极化电流(PDC)以及在不同老化持续时间下XLPE绝缘裂纹时的伸长率。XLPE绝缘状态取决于断裂保留率(ER%)的伸长率。基于扩展的Debye模型,本文提出了稳定的松弛电荷数量和0.1 Hz的耗散因子,以评估XLPE的绝缘状态。结果表明,XLPE绝缘的ER%随着衰老程度的增长而降低。XLPE绝缘的极化和去极化电流将随着热老化而明显增加。电导率和陷阱水平密度也将增加。扩展Debye模型的分支数量增加,并出现新的极化类型。在本文提出的0.1 Hz处的稳定的松弛电荷量和耗散因子与XLPE绝缘的ER%具有良好的拟合关系,可以有效地评估XLPE绝缘的热老化状态。
高表面特性。tc ba-y-cu-o和通过薄绝缘子过层钝化。Takashi Hirao,Kentaro Setsune和Kiyotaka W asa。中央重新建筑实验室,Matsushita Electric Industrial Co.,Ltd.,3-15,Yagumonakamachi,Moriguchi,Osaka,Osaka 570
感谢 Yabra Muvdi 提供的出色研究协助,他创建并估算了分类算法,并感谢 Miaomiao Zhang 和 Kelsey Shipman 为数据分析提供支持。Hansen 非常感谢 ERC Consolidator Grant 864863 的资金支持,感谢伦敦政治经济学院 STICERD 博士研究基金和英联邦奖学金委员会的 Lambert 的资金支持,感谢 Smith Richardson 和 John Templeton 基金会的 Bloom 的资金支持,感谢 Templeton 基金会和芝加哥大学布斯商学院的 Davis 的资金支持,感谢哈佛商学院的 Sadun 的资金支持。本文附带的精选可视化和数据可在 www.WFHmap.com 上找到。本文表达的观点为作者的观点,并不一定反映美国国家经济研究局的观点。