CO 2捕获,利用和存储(CCUS)技术是减轻温室气体排放的最有效的方法,吸引了全球相当大的关注。1,2 CCUS技术基于二氧化碳的捕获和分离。3要实现捕获和隔离二氧化碳的目的,膜分离已成为普遍的方法。该技术允许通过二氧化碳和膜之间的物理或化学相互作用选择性渗透二氧化碳。研究二氧化碳膜分离方法的研究围绕高效率膜的制备和获取。目前,经过广泛研究的CO 2分离膜包括无机,有机和新兴膜。无机膜主要由二氧化硅,沸石和石墨烯膜组成。有机膜包括纤维素,聚酰胺,多硫酮和聚醚膜。新兴膜包括复合材料,金属 - 有机框架(MOF),Zeolitic imidazo-late Framework(ZIF),碳分子筛(CMS),固有微孔(PIM)的聚合物(PIM)和促进的运输膜。具有低能消耗和高分离效率的显着优势,膜分离方法正在迅速出现,因为二氧化碳捕获和分离的全球前进技术。4
图1:Nafion N117(A,C)的电导率(A,B)和电解质质量分数(C,D)和烟雾E-620(B,D)在NaOH或KOH电解质中浸泡在Select浓度(MOH IN MOH代表Na或K)处的膜。在表S2和S3中将相应的数据表列出。
TRPV1 在结构上被描述为同型四聚体通道。四个亚基中的每一个都含有六个跨膜结构域(S1-S6;图 2)。每个单体链总共由 838 个氨基酸组成,氨基酸残基 433–684 形成跨膜结构域。跨膜区由六个螺旋(S1-S6)组成,这些螺旋形成电压传感器样结构域(S1-S4)和内孔区(S5-S6)。跨膜结构域 5 和 6 由疏水 S4S5 连接环连接,并参与通道孔的形成。离子通道孔由选择性过滤器和孔螺旋形成。来自螺旋 S6 底部的残基充当激活门。不同的 TRPV 亚型具有不同的孔半径,可调节通道选择性。激活配体的结合导致两个门 8 的顺序和变构耦合打开。
从介电常数和绝缘破坏电场强度的观点出发选择Al 2 O 3 、HfO 2 、SiO 2 。使用这些绝缘膜制作MOS结构样品,并评估绝缘膜的介电击穿场强和介电常数。为了进行评估,我们使用了新推出的浸入式手动探测器。在该评价中,HfO 2 膜表现出最高的介电常数和击穿电场强度。通过简单的器件模拟,发现如果该膜具有这种水平的特性,则它可以用作氧化镓MOSFET的栅极绝缘膜。因此,在本研究中,我们决定使用该HfO 2 薄膜进行MOSFET的开发。由于不仅需要从初始特性而且还需要从长期可靠性的角度来选择绝缘膜,因此我们还考虑了具有第二好的特性的Al 2 O 3 膜作为候选材料I。取得了进展。 2020财年,我们改进了栅极绝缘膜的材料选择和成膜条件。具体地,对于作为栅极绝缘膜的候选的Al 2 O 3 ,为了减少作为沟道电阻增大的因素的栅极绝缘膜/氧化镓界面处的电荷,将Al 2 O 3 /镓我们考虑在成膜后通过热处理去除氧化物界面。图3示出了(a)评价中使用的MOS结构的截面图和(b)界面态密度分布。确认了通过在N 2 气氛中在450℃下热处理10分钟,可以形成界面能级为1×10 12 eV -1 cm -2 以下的良好界面。可知当温度进一步上升至550℃、650℃、800℃时,产生10 12 eV -1 cm -2 量级的界面态并劣化。通过本研究,我们获得了构建晶体管基本工艺过程中的热处理温度的基本数据。
系统,人工智能机构间工作组将致力于将联合国的伦理和技术部分结合起来,为当前和未来全系统在人工智能方面的努力奠定坚实基础,以确保尊重人权并加快实现可持续发展目标。人工智能机构间工作组将通过汇集联合国系统在人工智能方面的专业知识来实现这一目标,特别是支持 CEB 和 HLCP 关于人工智能伦理的工作流以及支持能力发展的战略方针和路线图,同时确保在适当情况下并在工作组范围内对各种人工智能相关的新兴技术、数据举措和授权流程进行合作、协调和贡献,以避免重复并确保协同作用、合作和协调。工作组还将根据需要在其活动中寻求不同利益攸关方团体的建议和参与,以从他们的专业知识中受益。
ARR 年收入要求 BPA 博纳维尔电力管理局 CREZ 竞争性可再生能源区 DCRF 折旧资本回收率 DOE 美国能源部 EIA 能源信息署 ERCOT 德克萨斯州电力可靠性委员会 EUE 预期未服务能源 FERC 美国联邦能源管理委员会 GW 吉瓦 HVAC 高压交流电 HVDC 高压直流电 IGBT 绝缘栅双极晶体管 IREZ 跨区域可再生能源区 ISO-NE 新英格兰独立系统运营商 kV 千伏 LCC 线路换向转换器 LCOE 平准化能源成本 LMP 位置边际价格 MISO 中大陆独立系统运营商 MOSFET 金属氧化物半导体场效应晶体管 MW 兆瓦 MWh 兆瓦时 NOPR 拟议规则制定通知 NREL 国家可再生能源实验室 NTP 研究 国家输电规划研究 NYISO 纽约独立系统运营商 PJM PJM 互连 ROW 通行权 SPP 西南电力池 VSC 电压源转换器 WECC 西部电力协调委员会WEIM 西部能源不平衡市场
摘要 跨虚拟分析 (XVA) 是沉浸式分析和可视化分析领域的一个新研究领域。目前,现实-虚拟连续体中的各种异构设备以及相应的视觉隐喻和分析技术已面世。XVA 的目标是实现使用过渡和协作界面无缝集成不同设备并支持多个用户的可视化分析。在本文中,我们将仔细研究 XVA,并分析现有工作以概述其当前状态。我们对相关文献进行了分类,这些文献涉及通过互连现实-虚拟连续体中的不同阶段来建立跨虚拟性的方法,以及在不同阶段之间进行过渡和协作的技术。我们对当前 XVA 系统中采用的可视化和交互技术提供了见解。我们报告了评估此类系统的方法,并分析了此类系统可用的领域。最后,我们讨论了 XVA 中的开放挑战,为未来的研究指明了方向。
本书提供了先进和应用的视角,整合了关键的国际商业和跨文化管理主题。对于每个主题,本书都讨论了有助于解决实际挑战的先进和当代理论框架和工具集。来自跨国公司的战略挑战和解决方案的更全面的示例证明了每章中框架和工具集的价值。此外,您还可以将所学知识应用于 Magic Juice,这是一家需要帮助的果汁吧连锁店,涉及本书的每个主题——一个整合所有章节的案例研究。本书的网站提供了多种材料,包括工具集、章节和进一步的案例和练习、随附视频、测验和演示文稿幻灯片。