I II III 因素 1 (H1):不信任他人的自我中心主义 (α=.79) 12. 人们可能会说好话,但最终他们最关心的是自己的幸福。 5.03 (1.12) .65 -.05 .00 16. 人们更有可能维护自己的权利,而不是承认他人的权利。 4.70 (1.06) .64 -.04 .00 2. 人们会做一些轻微的错事来获得自己的利益。 4.48 (1.11) .60 .08 .09 17. 人们撒谎是为了避免麻烦。 4.61 (1.08) .60 .01 .07 6. 人们撒谎是为了出人头地。 4.35 (1.21) .54 .13 .16因素 2 (H2):相信人们的诚实 (α=.70) 5. 人们通常过着诚实正直的生活 4.16 (1.17) -.11 -.70 .14 8. 人们通常诚实地与他人打交道 4.55 (1.03) .13 -.65 -.15 1. 人们基本上是诚实的 4.36 (1.19) .08 -.61 -.15 14. 人们说到做到 4.00 (1.08) -.11 -.50 .16 因素 3 (H3):不相信人们的谨慎 (α=.67) 4. 人们怀疑别人对自己很友善,因此很谨慎 3.90 (1.09) .05 -.07 .64 10. 人们认为不信任他人更安全4.03 (1.14) .13 .03 .54 13. 人们内心不愿意帮助别人 3.53 (1.10) .00 .11 .53 9. 人们很谨慎,因为他们认为有人会利用他们 4.38 (1.08) .20 -.15 .43 最大似然法,Promax 旋转 特征值 3.93 1.90 1.16 贡献率 30.3% 14.6% 8.9% 累积贡献率 30.3% 44.8% 53.7% 因子间相关性 I - 0.25 0.55 II - - 0.31
本卷包含 2019 年 10 月 9 日至 11 日在爱沙尼亚塔林举行的第 17 届 EFNIL 年会上的演讲。此次会议由爱沙尼亚语言学院、爱沙尼亚语言理事会、教育和研究部、塔林市政府、母语学会和欧盟委员会翻译总司 (DGT) 和 EFNIL 合作举办。在会议上提交的论文中,以不同的方式强调了“语言与经济”这一主题。本卷的第一篇文章基于会议上的主旨演讲,从一种或多种语言的经济权重的角度来理解语言的经济权重问题。本文主要从英语在世界范围内的重要性来讨论语言的经济权重问题。尽管经济效益与语言使用之间的联系的考虑构成了本书第一部分的基调,但它们与对经济(即有效和适当)语言使用及其与经济因素关系的思考相关。本书第一章中的论文讨论了如何将经济学家的观点系统地融入语言论述中,以及如何在现代欧洲社会中有效利用人力资本“语言”,以及在日益发展的语言产业领域中产生的实际影响。会议副标题中讨论的最后一个方面,即语言产业,指的是多语言互动的实际挑战,并提出了相当多的具体问题。管理多语言结构最明显的后果之一是专业翻译和口译的必要性,本书第二章将讨论这个问题。解决这些问题的问题——例如在欧盟机构中——无疑具有经济方面;这样的解决方案提供了经济机会,是成本效益计算的对象。下一部分是关于在多语言环境中掌握和使用多种语言的好处(以及某些语言技能的局限性)。文章举例说明了多种语言是否以及在何处使用有效且具有经济优势。在关于简单语言作为另一种经济交流方式的论文中,讨论了近年来越来越明显的一个方面。使用简单语言可以减少误解,这一事实也产生了经济效益。本节中的论文展示了经济问题和包容性和多样性的民主概念如何重叠。
本书是我在加州大学圣克鲁斯分校开始学习阿拉伯语、印地语-乌尔都语、波斯语和梵语 16 年的成果,之后我在美国印度研究所、德里大学和德克萨斯大学奥斯汀分校继续学习。我的第一位印地语-乌尔都语老师约翰·莫克 (John Mock) 一直是我的主要灵感来源。我同样感谢美国乌尔都语研究所勒克瑙分校项目的所有老师,感谢他们的耐心,感谢他们带我进入乌尔都语文学的世界。我特别感谢与 Fahmida Bano、Wafadar Husain、Ahtesham Khan 和 Sheba Iftikhar 一起讨论乌尔都语单词的大量时间。在威斯康星大学麦迪逊分校,我有幸协助和观察已故的 Qamar Jalil,他的教学见解反映在本书中。在德克萨斯大学奥斯汀分校,我有幸与世界上一些最伟大的语言和文学教师一起学习。 Syed Akbar Hyder 为我提供了广泛而严格的乌尔都语文学指导。Michael Hillmann 花费数年时间训练我精通波斯语。本书阿拉伯语和波斯语单元中的许多想法和见解都直接源自他的指导。我还要感谢 Rupert Snell,我跟随他学习印地语八年,他让我领略了印地语-乌尔都语词汇的诸多乐趣以及应用语言文学的知识回报。本书也是我在加州大学伯克利分校、德克萨斯大学奥斯汀分校和威斯康星大学麦迪逊分校教授乌尔都语十一年的成果。我最初于 2008 年在威斯康星大学麦迪逊分校的南亚暑期语言学院构思了这个项目,并从与学生和同事的交谈中受益匪浅,包括 Qamar Jalil 和 Faraz Sheikh。我在德克萨斯大学奥斯汀分校的印地语-乌尔都语旗舰课程任教期间开发了这些单元的基本结构和许多课程的初稿。多年来,我在那里教过许多才华横溢的学生,但我特别感谢 Ayana D'Aguilar 和 Courtney Naquin 的反馈,他们在我研究生最后一年与我一起完成了许多练习的初稿。过去四年,我一直在加州大学伯克利分校开发和教授这些材料。他们的反馈启发了我进行无数轮的修改。特别感谢以下学生,他们在本书准备出版的最后阶段参与了本书的大部分工作:Hammad Afzal、Khudeeja Ahmed、Hammad Ali、Aparajita Das、Elizabeth Gobbo、Salil Goyal、Shazreh Hassan、Caylee Hong、Zain Hussain、Talib Jabbar、Maryam Khan、Adeel Pervez、Omar Qashoa、Adnan Rawan、Ahmad Rashid Salim、Nawal Seedat 和 Fatima Tariq。还要特别感谢 Sally Goldman 对梵文单元的有益反馈和建议,以及我的朋友和同事 Walter Hakala 在修订后期对这些单元的精辟评论。他们的反馈大大提高了本书的质量。当然,所有错误和疏忽都是我一个人的错。
13:50-14:50 第 6 节 主席:Toya Ohashi 和 Hiromi Kanegae 先天性代谢错误的体内基因治疗 1) 针对罕见疾病患者正在进行的基因治疗临床试验的结果:MPS IIIa、GSDIa、OTC 缺乏症和威尔逊氏病 Eric Crombez – (Ultragenyx Pharmaceutical Inc. 美国加利福尼亚州诺瓦托) 2) 通过在小鼠中表达血脑屏障穿透酶的 AAV 使 GM1 神经节苷脂储存完全正常化 Koki Matsushima (慈惠会大学医学院基因治疗系)
感谢 Yabra Muvdi 提供的出色研究协助,他创建并估算了分类算法,并感谢 Miaomiao Zhang 和 Kelsey Shipman 为数据分析提供支持。Hansen 非常感谢 ERC Consolidator Grant 864863 的资金支持,感谢伦敦政治经济学院 STICERD 博士研究基金和英联邦奖学金委员会的 Lambert 的资金支持,感谢 Smith Richardson 和 John Templeton 基金会的 Bloom 的资金支持,感谢 Templeton 基金会和芝加哥大学布斯商学院的 Davis 的资金支持,感谢哈佛商学院的 Sadun 的资金支持。本文附带的精选可视化和数据可在 www.WFHmap.com 上找到。本文表达的观点为作者的观点,并不一定反映美国国家经济研究局的观点。
因此,跨个体、跨场景的脑电分析方法逐渐成为研究热点。越来越多的研究人员将广泛应用脑 电信号分析的特征于跨个体、跨场景的脑电信号分析研究中。 Touryan 等人采用经典的独立成分分 析的特征分析方法描述特征空间,计算功率谱密度( Power Spectral Density , PSD ),并采用顺序 前向浮动选择方法识别频谱特征中的独立成分集,结果表明该方法可以识别出跨场景脑电信号中的 共同成分 [88] 。 Kakkos 等人采用了特征融合的方法,将 PSD 与功能连接特征相结合,提高了跨场景 分类的性能,并证明了脑特征融合在跨场景中的应用更为有效 [89] 。 Xing 等人将模糊熵特征用于跨 场景脑电信号分析,发现模糊熵特征相对于其他特征更能适合跨场景 [90] 。卷积神经网络 ( Convolutional Neural Networks , CNN )和递归神经网络( Recurrent Neural Networks , RNN )等基 于深度学习的新型跨任务模型在跨场景脑电分析中展现了巨大潜力。这些模型能够自动提取特征和 学习复杂的脑电特征,从而有效地缩小不同任务和场景之间的差距,提高模型的泛化能力 [91][92][93] 。 近年来,一些跨学科的方法被创新性地应用于跨场景研究, Zhao 等人提出了一种跨学科的对齐多 源域自适应方法,用于跨个体的 EEG 疲劳状态评估,显著提高了模型的泛化能力 [94] , Zhou 等人在 此基础上进行改进,提出了一种跨任务域自适应方法,有效提升了跨场景认知诊断的性能 [95] 。