在轨操作(例如维修和组装)被视为未来航天工业的优先事项。模拟在轨相互作用的地面设施是开发和测试太空技术的关键工具。本文介绍了一种使用地面机器人操纵器模拟在轨操作的控制框架。它将用于机器人操纵器笛卡尔运动控制的虚拟正向动力学模型 (VFDM) 与基于 Clohessy Wiltshire (CW) 模型的轨道动力学模拟器 (ODS) 相结合。众所周知,基于 VFDM 的逆运动学 (IK) 解算器比传统 IK 解算器具有更好的运动跟踪、路径精度和解算器收敛性。因此,它为基于轨道模拟的操纵器提供了稳定的笛卡尔运动,即使在奇异或接近奇异的配置下也是如此。该框架在 SnT 的 ZeroG-Lab 机器人设施上通过模拟两种场景进行了测试:自由浮动卫星运动和自由浮动相互作用(碰撞)。结果显示,ODS 指挥的模拟运动与机器人安装的模型执行的运动之间存在保真度。
学生,Neerja Modi 世界学校 摘要 本文探讨了使用比例-积分-微分 (PID) 反馈控制系统的巡线机器人的设计和开发。巡线机器人是一种广泛采用的自主系统,可以根据传感器数据和实时调整使机器人遵循预定义的路径。本文详细介绍了制造机器人所需的组件、构造和编程,重点介绍了 PID 系统的实施和调整。彻底分析了调整 PID 参数(比例(Kp)、积分(Ki)和微分(Kd))对机器人效率、稳定性和路径精度的影响。这项工作有助于理解如何优化 PID 系统以用于机器人应用,从而实现精确和自适应控制。 关键词:控制系统、巡线机器人、PID、PID 调整、比例积分微分、机器人设计、机器人开发、机器人技术、机电一体化 1. 简介 自主机器人系统的发展彻底改变了现代技术,从工业自动化到消费电子产品。巡线机器人是了解机器人技术和控制系统原理的绝佳示例和学习项目。它还具有实际用途,例如自动化工业任务,例如物料搬运、产品装配和质量控制。它使用传感器检测线路并根据反馈机制实时调整其运动以保持其轨迹。比例、积分、微分 (PID) 控制系统是提高此类机器人准确性和效率的有效方法。通过调整 PID 参数,工程师可以优化机器人对路径偏差的响应并增强其稳定性。本文讨论了采用 PID 控制系统的巡线机器人的设计、开发和实施,包括调整过程和实现最佳性能的挑战。 2. 所需组件 制造巡线机器人所需的组件如下: A) 物理组件 i) 底盘 - 机器人的底盘是 3D 设计的,如图 (2.1) 和图 (2.2) 所示。它已针对最大性能进行了优化。较长的底盘比较短的底盘更好,因为红外传感器阵列的偏差会更大,从而使机器人运行速度更快。