摘要 — 当前的量子计算机受到非平稳噪声信道的影响,错误率很高,这削弱了它们的可靠性和可重复性。我们提出了一种基于贝叶斯推理的自适应算法,该算法可以根据变化的信道条件学习和减轻量子噪声。我们的研究强调了对关键信道参数进行动态推理以提高程序准确性的必要性。我们使用狄利克雷分布来模拟泡利信道的随机性。这使我们能够进行贝叶斯推理,从而可以提高时变噪声下概率误差消除 (PEC) 的性能。我们的工作证明了表征和减轻量子噪声的时间变化的重要性,这对于开发更准确、更可靠的量子技术至关重要。我们的结果表明,当使用与理想分布的 Hellinger 距离来衡量时,贝叶斯 PEC 的性能可以比非自适应方法高出 4.5 倍。索引词 — 设备可靠性、计算精度、结果可重复性、概率错误消除、自适应缓解、时空非平稳性、时变量子噪声、NISQ 硬件-软件协同设计
协变码是一种量子码,逻辑系统上的对称变换可以通过物理系统上的对称变换来实现,通常具有有限的量子纠错能力(一个重要的例子是 Eastin-Knill 定理)。理解协变量子纠错极限的需求出现在物理学的各个领域,包括容错量子计算、凝聚态物理和量子引力。在这里,我们从量子计量和量子资源理论的角度探索了连续对称性的协变量子纠错,在这些以前分散的领域之间建立了牢固的联系。我们证明了协变量子纠错不保真度的新的、强大的下界,这不仅扩展了以前不行的结果的范围,而且比现有界限有了很大的改进。为擦除和去极化噪声推导出了明确的下界。我们还提出了一种几乎饱和这些下界的协变码。
只有一克人的便便,有超过1000亿个细菌和最多1万亿个噬菌体!这意味着古代人类便便样品非常适合查找噬菌体DNA。我们选择了30个古老的便便样品。我们选择的最古老的样本来自5300年的冷冻木乃伊,名为ÖtziiCeman。我们还使用了来自世界各地的古代人类的大便,包括美国,墨西哥和奥地利(图1)。猜猜是什么?我们不必自己收集任何样本,因为它们以前是由不同小组研究的。我们只是回收了他们的数据!
摘要。通过跳动的心向反向散射的场的空间和时间演变,同时用连贯的光照亮了其宏观和微血管化。要执行这些血管化图像,我们基于对空间去极化的斑点场的选择性检测,主要通过多个散射生成的空间去极化斑点场的选择性检测。我们通过空间或时间估计来考虑斑点对比度的计算。我们表明,通过后处理方法,可以明显增加观察到的血管结构的信噪比,这意味着计算运动场,该方法允许选择从不同心跳时期提取的相似帧。此后来的优化揭示了血管微观结构,其空间分辨率为100μm。©作者。由SPIE在创意共享归因4.0国际许可下出版。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jbo.28.4.046007]
ExaML 单跳 ExaML 单跳 ExaML 单跳 ExaML 两跳 ExaML 两跳 ExaML 两跳 ExaML 两跳 ExaML 两跳 ExaML 两跳 Dell PowerEdge IBM PowerSystem Nvidia DGX-1 Intel Gaudi Nvidia DGX-2 IBM Summit SNSC Piz Daint Microsoft Philly Google TPU Pod Sunway TaihuLight Nvidia SuperPod
4 DVB-S2X 扩展技术特性的一般描述 ............................................................................................................................. 17 4.0 概述 ............................................................................................................................................................. 17 4.1 DVB 商业要求 ............................................................................................................................................. 17 4.1.0 背景 ............................................................................................................................................. 17 4.1.1 增强型 DVB-S2 标准的用例 ............................................................................................................. 18 4.1.1.0 一般方面 ............................................................................................................................................. 18 4.1.1.1 直接到户 ............................................................................................................................................. 18 4.1.1.2 需要低 SNR 链路的应用 ............................................................................................................. 18 4.1.2 DVB-S2 标准增强功能的商业要求 ............................................................................................. 18 4.1.3 支持波束跳变的 DVB-S2 标准增强功能的商业要求 ............................................................................................................................. 20 4.2 应用场景................
摘要 — 近年来,源位置隐私已成为无线传感器网络中的重大挑战。源位置隐私是隐藏实际源的物理位置,使对手更难追溯到源位置的路径。对手可以使用射频定位技术,以便他们可以逐跳追踪从接收器到源的反向路径并识别源。已经建立了许多与隐私相关的技术,例如幻影路由、基于云的路由、基于树的转移路由等,但在源位置隐私方面仍然存在一些问题。因此,为了保护源位置隐私并保持能源效率,可以使用基于多 k 跳集群的路由策略 (MHCR)。在该方案中,整个网络中形成了各种干扰簇。集群中的每个传感器都充当伪源。因此,对手会感到困惑,无法追踪到源的反向路径。簇头还用于过滤由伪源形成的虚拟流量,以免网络热点的能耗增加。 MHCR 可在不缩短网络寿命的情况下提高能源效率,并保护无线传感器网络中的源位置隐私。关键词-无线传感器网络、基于多 k 跳簇的路由、簇头、网络寿命、能源效率。
众所周知,供应链上的信息共享可以提高生产力并降低成本。然而,随着供应链向更加动态和灵活的方向发展,隐私问题对所需的信息检索提出了严峻的挑战。不同利益相关者之间缺乏信任会阻碍先进的多跳信息流,因为用于跟踪和追溯产品和零件的宝贵信息要么不可用,要么仅保留在本地。我们对以前方法的广泛文献综述表明,这些跨公司信息检索的需求得到了广泛认可,但相关工作目前只能充分解决这些问题。为了克服这些问题,我们提出了 PrivAccIChain,这是一种安全的隐私保护架构,用于改进供应链上的多跳信息检索,并实现利益相关者责任制。为了满足特定用例的需求,我们特别在设计中引入了透明度和数据隐私的适应性配置。因此,即使在包括相互不信任的利益相关者的供应链中,我们也能实现信息共享以及多跳跟踪和追踪的好处。我们评估了 PrivAccIChain 的性能,并根据可购买汽车 e.GO Life 的信息证明了其在现实世界中的可行性。我们进一步进行了深入的安全分析,并提出了针对常见攻击的可调缓解措施。因此,我们证明 PrivAccIChain 即使在具有灵活和动态业务关系的复杂供应链中也适用于信息管理。
摘要 - 全世界部署的物联网设备中有很多,电池是其主要电源。但是,这些电池笨重,短暂,充满了损害我们环境的危险化学物质。依靠电池不是未来物联网的可持续解决方案。作为替代性,无电池设备,使用了使用能量收割机充电的长寿命电容器运行。电容器的较小的储能能力导致间歇性的开关行为。Lorawan是许多物联网设备中使用的流行低功率广泛区域技术,可用于这些新情况。在这项工作中,我们提出了一个马尔可夫模型,以表征无电池的Lorawan设备用于上行链路和下行链路传输的性能,并根据定义模型的参数(即设备配置,应用程序行为和环境条件)评估它们的性能。结果表明,如果选择适当的配置(即电容器尺寸,转交压阈值),则无电池电量的通信是可行的。由于在第二接收窗口中的下行链路高度影响性能,因此仅考虑这些设备的小型DL数据包尺寸。此外,47 MF电容器可以以1 MW的能量收集速率支持1个字节SF 7传输。但是,如果没有预期的DL,则每9 s每9 s可以支持4.7 MF的电容器。
