一个 55 年历史的继电器发生一次组件故障,表明了过去几十年继电器系统的卓越可靠性。这应该让我们思考传统上使用两个不同的继电器系统来提高可靠性的做法。该实用程序提供的数据表明,几乎所有跳闸故障都是由连接线或断路器问题引起的,而不是继电器结构或设计。这表明添加第二个不同的继电器系统几乎不会提高保护系统的可靠性。另一方面,由于第二个不同的继电器系统增加了设置错误的概率,因此随着继电器的增加,误跳闸的概率大约翻倍。当出于维护或测试目的需要两个继电器时,这些数据表明,具有相似的接线和设置将提供最小的安全性下降。
反应堆保护要求必须检测故障情况,以防止或减少任何活动的释放。基本功能是检测工厂信号(例如反应堆中子通量或冷却剂温度)是否超出阈值。这会在三通道或四通道投票系统中产生跳闸投票。如果检测到故障,则必须通过放下控制棒来跳闸反应堆,并启动缓解措施(例如启动泵和操作阀门)。保护功能通常不是很复杂,但有很多。如果连续进行计算(例如燃料的线性热额定值),则可以更有效地完成某些操作。有些取决于工厂状况或功率水平,从而引入决策逻辑。缓解措施取决于检测到的故障,从中检测到的信号已离开可接受的限度。作为指导,大约 80 个常规逻辑图可以表示压水反应堆 (PWR) 保护所需的输入调节和驱动逻辑。
摘要。由于输电线 (TL) 是电力系统中的重要组成部分,本文介绍了使用可编程逻辑控制 (PLC) 的三相 TL 系统过流保护的设计和实际实施。然后,PLC 在线监测每相负载电流的值并检测过流,同时通过发送输出信号来跳闸断路器 (CB) 线圈,从而隔离故障。PLC 的显示单元用于显示负载电流,并发出带有发生故障类型的警报信息。所提出的控制器程序还会在浪涌的一定时间内取消 CB 的跳闸信号并指示负载电流。此外,当过流释放时,自动重合闸系统可使 CB 恢复工作。与其他保护控制器系统相比,基于 PLC 的保护方法成本更低,精度更高,操作更安全。采用功能块图 (FBD) 语言来实现所提出的软件控制器。通过 LOGO! Soft Comfort V7.0 软件程序对所提出的控制器进行模拟,以便在下载到 PLC 之前对程序进行虚拟植入。
10.0 输入端子操作功能 ...................................................................... 10-1 10.1 输入端子选择功能 ...................................................................... 10-1 10.2 启动/停止-远程控制 ...................................................................... 10-2 10.3 远程控制频率设置 ...................................................................... 10-2 10.4 点动 ...................................................................................... 10-3 10.5 跳闸后复位 ...................................................................................... 10-3 10.6 模式运行 ...................................................................................... 10-4 10.7 PID 设定点控制 ............................................................................. 10-5
10.0 输入端子操作功能 ......................................................................10-1 10.1 输入端子选择功能 ......................................................................10-1 10.2 启动/停止-远程控制 ......................................................................10-2 10.3 远程控制频率设定 ......................................................................10-2 10.4 点动 .............................................................................................10-3 10.5 跳闸后复位 .............................................................................10-3 10.6 模式运行 .............................................................................................10-4 10.7 PID 设定点控制 .............................................................................10-5 10.8 端子 IV .............................................................................................10-7
10.0 输入端子操作功能 ......................................................................10-1 10.1 输入端子选择功能 ......................................................................10-1 10.2 启动/停止-远程控制 ......................................................................10-2 10.3 远程控制频率设定 ......................................................................10-2 10.4 点动 .............................................................................................10-3 10.5 跳闸后复位 .............................................................................10-3 10.6 模式运行 .............................................................................................10-4 10.7 PID 设定点控制 .............................................................................10-5 10.8 端子 IV .............................................................................................10-7
拟议行动描述:邦纳维尔电力管理局 (BPA) 提议满足 Aurora Solar, LLC (Aurora) 的请求,通过 Aurora 现有连接线将 BPA 斯拉特变电站的 41 兆瓦 (MW) 电池储能系统连接到俄勒冈州吉利姆县阿灵顿附近。Aurora 将安装必要的发电机跳闸设备以参与 BPA 的补救行动计划 (RAS),BPA 将把来自该发电机跳闸设备的新输入添加到 Aurora 的 Montague II 站的 BPA 顺序事件记录器和监控与数据采集 (SER/SCADA) 远程终端单元 (RTU)。BPA 还将完成华盛顿州克拉克县温哥华的 Dittmer 控制中心和华盛顿州斯波坎县斯波坎的 Munro 控制中心的软件修改,以将新设备与其 SER/SCADA 系统完全集成。 BPA 提议的所有行动都将在现有设施的室内进行,并且 BPA 不会资助或承担任何扰乱地面的活动。
DX330 基于微处理器高效控制螺杆式空气压缩机,通过提前检查机器状态向用户发出跳闸警报,并为用户提供维护信息,让他们快速轻松地进行处理。此外,它还是基于 PID 控制系统的 VSD(变速驱动器)安装的尖端电子控制器,可帮助用户节省最多 30% 以上的能源成本。DX330
10.0 输入端子操作功能 ................................................................................10-1 10.1 输入端子选择功能 ..............................................................................10-1 10.2 启动/停止-远程控制 ..............................................................................10-2 10.3 远程控制频率设定 ..............................................................................10-2 10.4 点动 ......................................................................................................10-3 10.5 跳闸后复位 ......................................................................................10-3 10.6 模式运行 .............................................................................................10-4 10.7 PID 设定点控制 ......................................................................................10-5 10.8 端子 IV .............................................................................................10-7
10.0 输入端子操作功能 ................................................................................10-1 10.1 输入端子选择功能 ..............................................................................10-1 10.2 启动/停止-远程控制 ..............................................................................10-2 10.3 远程控制频率设定 ..............................................................................10-2 10.4 点动 ......................................................................................................10-3 10.5 跳闸后复位 ......................................................................................10-3 10.6 模式运行 .............................................................................................10-4 10.7 PID 设定点控制 ......................................................................................10-5 10.8 端子 IV .............................................................................................10-7