– 节点使用均匀(0,t u )分布从连续争用窗口中随机抽取起始时间,其中 t u 是窗口的持续时间。– 起始时间被转换到 TDMA 时间结构上,以避免在动态数据时隙之外传输。– 如果在起始时间之前接收到传入传输,则取消争用并在信道可用时重新启动
脚手架跳动 - 现有铅候选人的新型脚手架的设计 - 是一项多方面且非平凡的任务,用于药物化学家和计算方法。生成的增强学习可以迭代地优化从头设计的理想特性,从而提供了加速脚手架跳跃的机会。当前方法将一代限制在预定义的分子下结构中(例如,链接器或脚手架)脚手架跳。这种受限的一代可能会限制化学空间的探索,并需要复杂的分子(DIS)装配规则。在这项工作中,我们旨在通过允许“不受约束的”,全部分子的产生来推动脚手架跳跃的增强学习。这是通过匆忙(用于限制的s caffold H反对)方法来实现的。RUSH将一代推向设计,其具有与参考分子相似的三维和药效团相似的完整分子的设计,但脚手架相似性低。在第一项研究中,我们显示了急速探索已知脚手架类似物的灵活性和有效性,并设计了与已知结合机制相匹配的脚手架跳跃的候选者。最后,Rush和两种已建立的方法之间的比较突出了其无约束分子生成的好处,以系统地实现脚手架多样性,同时保留最佳的三维特性。
RF-5800V-HH 是 RF-5800V VHF 收发器的手持式配套产品,可将 FALCON II 战术无线电系列的性能扩展到班组级别。标准功能包括 Citadel 数字加密、Quicklook 1A ECCM 跳频、无线电到无线电填充、耳语操作和固定频率信道扫描。该无线电在固定频率和 ECCM 模式下提供完整的数据功能,并自动检测传入的数字语音或数据。Quicklook 1A ECCM 跳频可确保在干扰环境中实现可靠的语音和数据通信。
DME 与其军事客户和 OEM 合作,为 ATACTS 将测试的每台无线电设备建立和验证测试程序。根据批准的程序,典型的测试场景可能包括测量无线电的 RF 输出、调制(无论是 FM 偏差还是百分比 AM 调制、跳频还是非跳频)、误码率 (BER) 和输出信号的频率稳定性,然后通过向无线电提供调制信号来测试无线电的 RF 输入,并验证无线电发出的音频或数字信号以检查是否出现了正确的信号。通过使用 ATACTS 系统的刺激和响应功能,技术人员可以验证多种类型的无线电是否正常工作。
DME 与其军事客户和 OEM 合作,为 ATACTS 将测试的每种无线电设备建立和验证测试程序。根据批准的程序,典型的测试场景可能包括测量无线电设备的 RF 输出、调制(无论是 FM 偏差还是百分比 AM 调制、跳频还是非跳频)、误码率 (BER) 和输出信号的频率稳定性,然后通过向无线电设备提供调制信号来测试无线电设备的 RF 输入,并验证无线电设备的音频或数字信号以检查是否出现了正确的信号。通过使用 ATACTS 系统的刺激和响应功能,技术人员可以验证多种类型的无线电设备是否正常工作。
DME 与其军事客户和 OEM 合作,为 ATACTS 将测试的每台无线电设备建立和验证测试程序。根据批准的程序,典型的测试场景可能包括测量无线电的 RF 输出、调制(无论是 FM 偏差还是百分比 AM 调制、跳频还是非跳频)、误码率 (BER) 和输出信号的频率稳定性,然后通过向无线电提供调制信号来测试无线电的 RF 输入,并验证无线电发出的音频或数字信号以检查是否出现了正确的信号。通过使用 ATACTS 系统的刺激和响应功能,技术人员可以验证多种类型的无线电是否正常工作。
DME 与其军事客户和 OEM 合作,为 ATACTS 将测试的每台无线电设备建立和验证测试程序。根据批准的程序,典型的测试场景可能包括测量无线电的 RF 输出、调制(无论是 FM 偏差还是百分比 AM 调制、跳频还是非跳频)、误码率 (BER) 和输出信号的频率稳定性,然后通过向无线电提供调制信号来测试无线电的 RF 输入,并验证无线电发出的音频或数字信号以检查是否出现了正确的信号。通过使用 ATACTS 系统的刺激和响应功能,技术人员可以验证多种类型的无线电是否正常工作。
DME 与其军事客户和 OEM 合作,为 ATACTS 将测试的每种无线电设备建立和验证测试程序。根据批准的程序,典型的测试场景可能包括测量无线电设备的 RF 输出、调制(无论是 FM 偏差还是百分比 AM 调制、跳频还是非跳频)、误码率 (BER) 和输出信号的频率稳定性,然后通过向无线电设备提供调制信号来测试无线电设备的 RF 输入,并验证无线电设备的音频或数字信号以检查是否出现了正确的信号。通过使用 ATACTS 系统的刺激和响应功能,技术人员可以验证多种类型的无线电设备是否正常工作。
为了进一步避免声音噪声,该电路通过将跳周期模式期间的突发频率限制在 800 Hz 的最大值来防止开关频率 进入可听范围。这是通过一个定时器实现的,该定时器在安静的跳周期工作模式期间被激活。在该计时器计数结束 前,不允许打开开关周期。随着输出功率的降低,开关频率降低,一旦达到 25 kHz ,即达到进入入阈值并进入跳 周期模式。关闭开关管,停止开关周期,一旦开关停止, FB 将上升。一旦 FB 越过跳周期退出阈值(这时仍然为 跳周期工作模式),则打开驱动脉冲。此时,一个 1.25 ms 的计时器 tquiet 与一个计数到 3 的计数器一起启动。下 次 FB 电压降至跳入阈值以下时,只要计数到 3 个驱动脉冲,驱动脉冲就会在当前脉冲结束时停止(至少打开 3 个 开关脉冲)。在计时器计时结束之前不允许再次启动,即使先达到跳周期的退出阈值。需要注意的是,计时器不会 强制下一个循环开始,如果在计时器计时结束时未达到跳周期的退出阈值,则驱动脉冲将等待 FB 达到跳周期退出 阈值。这意味着在空载期间,每次开关至少会有 3 个驱动脉冲,脉冲串间隔周期可能远长于 1.25 ms 。该工作模式 有助于提高空载条件下的效率。 FB 电压必须升高超过 1 V ,才退出跳周期模式。如果在 tquiet 计时结束前 FB 电压 大于 1V ,则驱动脉冲将立即恢复,即控制器不会等待计时器结束。图 4 提供了一个安静跳周期工作原理的示例。