EEV) 具 有流量调节范围大 、 反应迅速 、 控制精确等特点 [9] , 在定频机组中的应用愈发受到关注 [10] 。 郝文洋 等 [11] 利用电子膨胀阀代替毛细管作为恒温恒湿箱的 节流装置进行实验研究 , 发现改进后箱体温湿度控制
到连续波(CW)HSR信号排除足够的有效穿透深度。确实是,hsr的基本物理学使用了CW信号,但不允许稍后放大(即更深的)到达有损培养基中(如脉冲地下雷达(ISR),HSR可能是可能的,但HSR具有不同的优势。其中最重要的是能够以ISR无法实现的分辨率进行较浅的地下成像。此外,由于相对较低的技术传输和接收触角,因此HSR系统的设计比ISR更简单。本文通过光学类比对HSR的主要原理进行了回顾,并描述了雷达全息图重建的可能算法。我们还介绍了Rascan类型的系统和应用的历史,这可能是唯一可商购的全息图地下雷达。在考虑的地下成像和遥感中,所考虑的是人道主义的脱落,建筑检查,对电介质航空航天材料的非破坏性测试,历史建筑和艺术品的调查,古生物学和安全筛查。用实验室和/或现场实验中获得的相关数据说明了每个应用程序。
稳态视觉诱发电位 (SSVEP) 是一种与周期性视觉刺激频率锁定的大脑活动( Zander 等人,2009 年)。与其他模式(例如运动想象 (Nicolas-Alonso and Gomez-Gil, 2012))相比,SSVEP 具有相对较高的准确度和信息传输率,并且对用户所需的培训最少,因此被广泛应用于脑机接口 (BCI) 中。标准的基于 SSVEP 的 BCI 在工作空间中包含多个刺激,每个刺激以不同的频率闪烁,而脑电图 (EEG) 主要从枕叶测量。测得的 EEG 反映了用户视觉上关注的刺激的频率,以及该频率的谐波。谐波的存在为解码过程提供了更多的参考点,但也给基于 SSVEP 的 BCI 的设计带来了额外的复杂性和挑战。例如,如果同一个 BCI 中对两个不同的刺激同时使用某个频率及其谐波,那么在记录的这两个刺激的脑电图中就会有共同的频率,这可能会混淆解码算法。因此,在文献中,一些研究有意避免在刺激中使用具有共同谐波的频率(Volosyak 等,2009;Chen 等,2015)。这个谐波问题,加上人脑对周期性视觉刺激的响应频率范围有限(Regan,1989),限制了标准基于 SSVEP 的 BCI 中可使用的唯一频率的数量;即,低信噪比脑电图记录和小的频率分离会损害解码性能。因此,在需要大量唯一频率来标记所有目标的场景中使用标准基于 SSVEP 的 BCI 具有挑战性。为了解决这个问题,已经引入了多频刺激方法,在每个刺激中使用多个频率,其中两个频率(双频)是最广泛使用的模态(Shyu 等,2010;Zhang 等,2012;Chen 等,2013;Hwang 等,2013;Kimura 等,2013;Chang 等,2014;Mu 等,2021a)。然而,这些研究主要集中于介绍多频刺激方法,并没有探讨频率选择方法。随着用于标记每个目标的频率数量的增加,在每个刺激或目标上使用多个频率可以成倍增加可以在工作空间中表示的目标数量。多频刺激产生复杂的周期性刺激信号,从而触发更复杂的 SSVEP 反应。在 Mu 等人的研究中, (2021a)表明,多频率 SSVEP 响应不仅包含输入频率及其谐波,还包含输入频率的整数线性组合,这些组合具有在记录的 SSVEP 中更可能观察到的低阶相互作用。注意,相互作用的顺序定义为
大于 80 Hz 的高频振荡 (HFO) 具有独特的特征,可将其与时频表示中可以充分证明的尖峰和伪影成分区分开来。我们引入了一种无监督的 HFO 检测器,它使用计算机视觉算法在二维 (2D) 时频图上检测 HFO 标志。为了验证检测器,我们引入了一个基于具有高斯包络的正弦波的 HFO 分析模型,可以推导出时频空间中的解析方程,这使我们能够在时域中常见的 HFO 检测标准与计算机视觉检测算法使用的频域标准之间建立直接对应关系。检测器在时频表示上识别潜在的 HFO 事件,如果满足有关 HFO 频率、振幅和持续时间的标准,则将其归类为真正的 HFO。根据分析模型,在存在噪声的情况下,对检测器进行了模拟 HFO 的验证,信噪比 (SNR) 范围从 -9 到 0 dB。检测器的灵敏度在 SNR 为 -9 dB 时为 0.64,在 -6 dB 时为 0.98,在 -3 dB 和 0 dB 时 > 0.99,而其阳性预测值均 > 0.95,无论 SNR 如何。使用相同的模拟数据集,我们的检测器与四个之前发布的 HFO 检测器进行了对比。F 度量是一种同时考虑灵敏度和阳性预测值的组合指标,用于比较检测算法。我们的检测器在 -6、-3 和 0 dB 时超越其他检测器,在 -9 dB SNR 时拥有仅次于 MNI 检测器的第二好 F 分数(0.77 对 0.83)。研究人员在 6 名患者的一组 36 个颅内脑电图 (EEG) 通道上测试了在临床记录中检测 HFO 的能力,其中 89% 的检测结果由两名独立审阅者验证。结果表明,基于时频图中的 2D 特征对 HFO 进行无监督检测是可行的,并且其性能与最常用的 HFO 检测器相当或更好。
生成AI(Genai)技术的迅速崛起将诸如Openai的Sora之类的创新视频生成模型带到了前方,但是由于其高碳足迹,这些进步带来了巨大的可持续性挑战。本文介绍了以碳为中心的视频生成案例研究,从而对该技术的环境影响进行了首次系统研究。通过分析开放式文本对视频模型的开放式索拉(Openai Sora)模型,我们将迭代扩散降解过程确定为碳排放的主要来源。我们的发现表明,视频生成应用比基于文本的Genai模型要大得多,并且它们的碳足迹在很大程度上取决于剥离步骤数字,视频分辨率和持续时间。为了促进可持续性,我们建议在高碳强度期间整合碳感知信用系统并鼓励离线产生,为Genai提供环保实践的基础。
高频 (HF) 通信,范围从 3 MHz 到 30 MHz,采用单边带、抑制载波调制,带宽约为 2.5 kHz,通常发射功率为几百瓦。但是,HF 传播会随频率、天气、一天中的时间和电离层条件而变化。甚高频 (VHF) 通信跨越两个不同的频段:30 MHz 至 88 MHz 专供军事用户使用,118 MHz 至 156 MHz 供民用和军用用户使用,标准双边带 AM 调制,发射功率为 40 dBm 至 45 dBm。超高频 (UHF) 通信包括 VHF 和 UHF,工作频率为 225 MHz 至 400 MHz。FM 调制方案采用 40 dBm 至 50 dBm 的发射功率,AM 调制方案采用 40 dBm 至 44 dBm 的发射功率。该频段通常被军事用户用于各种脉冲、跳频和电子对抗措施 (ECCM),例如抗干扰。
摘要:卷积神经网络(CNN)已被广泛用于根据脑磁共振(MR)图像预测生物大脑年龄。然而,CNN 主要关注空间局部特征及其聚合,而很少关注远处区域之间的连接信息。为了解决这个问题,我们提出了一种新颖的多跳图注意(MGA)模块,该模块与 CNN 结合时可同时利用图像特征的局部和全局连接。插入卷积层之间后,MGA 首先使用块嵌入和基于嵌入距离的评分将卷积得出的特征图转换为图结构数据。使用马尔可夫链过程对图节点之间的多跳连接进行建模。执行多跳图注意后,MGA 将图重新转换为更新的特征图并将其传输到下一个卷积层。我们将 MGA 模块与 sSE(空间挤压和激励)-ResNet18 相结合,形成最终预测模型(MGA-sSE-ResNet18),并执行各种超参数评估以确定最佳参数组合。使用 2788 张健康受试者的三维 T1 加权 MR 图像,我们通过与四个成熟的通用 CNN 和两个代表性脑年龄预测模型进行比较,验证了 MGA-sSE-ResNet18 的有效性。所提出的模型获得了最佳性能,平均绝对误差为 2.822 岁,皮尔逊相关系数 (PCC) 为 0.968,证明了 MGA 模块在提高脑年龄预测准确性方面的潜力。
运动想象脑机接口 (MI-BCI) 已成为神经康复领域的一项很有前途的技术。然而,目前的多类 MI-BCI 的性能和计算复杂度尚未得到充分优化,而且很少研究对运动想象任务中个体差异的直观解释。在本文中,首先将精心设计的多尺度时频分割方案应用于多通道脑电图记录以获得时频片段 (TFS)。然后,利用基于特定包装器特征选择规则的 TFS 选择来确定最佳 TFS。接下来,使用发散框架中实现的一对一 (OvO)-divCSP 来提取判别特征。最后,利用一对其余 (OvR)-SVM 根据选定的多类 MI 特征预测类标签。实验结果表明,我们的方法在两个公开的多类 MI 数据集上取得了优异的性能,平均准确率为 80.00%,平均 kappa 为 0.73。同时,提出的 TFS 选择方法可以显著减轻计算负担,同时准确率几乎没有降低,证明了实时多类 MI-BCI 的可行性。此外,运动想象时频反应图 (MI-TFRM) 是可视化的,有助于分析和解释不同受试者之间的表现差异。
为了探测靶向治疗的肿瘤的基因组谱,对组织标本和相关的血液样本进行了NGS分析,并确定了Met Exon 14跳过突变(C.3026_3028+11DEL)(图1B和1C)。未发现其他驱动基因变体。突变等位基因频率为33.87%。同样,组织样品的放大片段小于18S rRNA,与Met Exon 14跳过H569细胞系相似,进一步证实了Met Exon 14跳过的出现(图1D)。根据这些发现,患者每天两次开始用250毫克Crizotinib治疗。最值得注意的是,经过一个月的治疗后成像显示肿瘤显着减少。他的肺肿瘤的大小为1.0 cm×0.8 ccm×0.4 cm,符合recist的部分反应标准(-98%,图1E)。这持续了4个月,直到他经历了与疾病无关的死亡。