- 与项目工作组和其他利益相关者的初次会议。- 对相关规划立法的审查。- 对其他司法管辖区中政策的调查,以确定是否有一些计划对该法案有用。- 准备工作示例,以说明当前系统如何应用于各种建议并确定改进的机会。- 根据报告中的信息准备结论和建议。- 项目工作组成员审查报告草案。
1. 执行摘要 2020 年 10 月,硅谷清洁能源 (SVCE) 启动了 GridShift 试点项目,该项目利用车辆远程信息处理技术来控制和优化住宅客户在家中的电动汽车 (EV) 充电。GridShift 试点项目的目标是 (A) 通过在费率计划中最便宜的非高峰时段自动为电动汽车充电,帮助客户节省家庭能源费用;以及 (B) 将电动汽车充电与可再生能源生产商根据与 SVCE 和其他加州负荷服务实体签订的合同提供的低碳发电的非高峰时段保持一致。GridShift 在 COVID-19 大流行和居家令期间启动,能够利用住宅客户电动汽车充电时间表的额外灵活性,因为他们插电时间几乎是大流行前的两倍(平均在家插电时间为 20.2 小时,而大流行前为 12.2 小时);在白天保持插电对于能够利用加州电网上充足的太阳能为汽车充电尤为重要。 SVCE 将 72 名拥有 79 辆电动汽车的客户纳入 GridShift 移动应用程序,在主要优化非高峰时段的充电费用一段时间后,于 2021 年 3 月和 4 月启动了低碳活动试运行,通过推送通知和获得 10 美元账单信用额度的机会,激励客户在其费率计划的非高峰时段插入并允许在特别低碳的时段充电。成本优化的影响是,与插入后立即充电相比,GridShift 试点参与者平均每月节省了 24 美元的能源费用;节省的费用因费率计划而异,对于某些客户,每月最高可节省 46 美元,而对于其他客户,每月最低可节省 8 美元。在推出低碳活动后,在举办低碳活动的一天中,42% 的电动汽车充电都安排在碳排放最低的时段,与无管理充电相比,帮助 GridShift 参与者避免了 4,000 磅的二氧化碳电网排放。总共有 70% 的试点参与者参加了至少一次低碳活动,30% 的试点参与者参加了获得 10 美元电费抵免所需的最低活动数量(8 次)。为了在 2021 年夏季支持加州电网,SVCE 决定试行“关键 GridShift 时间”,客户在 CAISO FlexAlerts 和其他 SVCE 定义的事件之前收到推送通知,鼓励他们避免插入电源或启用智能充电以减轻电网压力。2021 年 8 月至 10 月期间,举行了六次此类可靠性活动,GridShift 能够将 98% 的总电动汽车充电转移到活动时间之外,参与者参加了抽奖,以赢得五项 100 美元电费抵免之一。在成功试点之后,SVCE 已开始扩大 GridShift 计划。关键考虑因素是将硬件兼容性扩展到更多车辆 OEM 以及联网的 EVSE,简化客户入职流程,并确保公平地进入一线社区。展望 2022 年夏季,SVCE 还可以考虑将关键 GridShift 小时功能扩展到其他活动类型,包括 ELRP 活动,并通过社区排行榜、成就徽章和其他功能进一步将参与游戏化。
1 Chaitanya Bharathi技术研究所,海得拉巴2摄影法,海德拉巴摘要Chaitanya Bharathi技术研究所副教授:用于电动汽车充电的太阳能动力系统,解决了用于电动汽车的充电,解决了燃料消耗和环境污染的主要问题。电动汽车已在全球引入,并且正在逐渐受欢迎。除了其环境优势之外,EV通过用电代替燃料而降低了旅行成本,这显然是负担得起的我们引入了一种创新的电动汽车充电系统,从而彻底改变了充电过程。与需要物理连接的传统方法不同,我们的系统使车辆在不需要电缆的情况下在运动时充电。通过利用太阳的力量,我们开发了一种太阳能系统,可以消除对外部电源的依赖。这种开创性的技术结合了LCD显示器,Atmega控制器,铜管线圈,AC-DC转换器,太阳能电池板,电池,变压器和调节器电路。此复杂的组装允许无线能量转移到电动汽车上,从而消除了充电停止的不便。因此,我们的系统无缝集成到现有的道路基础设施中,为电动汽车充电提供了可持续且高效的解决方案。这种充电技术的范式变化提供了许多优势。驾驶员可以享受不间断的旅程而不会焦虑,因为车辆不断补充能源供应。此外,太阳能的利用可促进清洁能源消耗,并减少对化石燃料的依赖。通过将无线充电与可再生能源相结合,我们为更绿色,更可持续的运输生态系统做出了贡献。该系统具有加速电动汽车采用并推动电动移动性关键词的进步:电动汽车,电动力量,无线电源传输,效率,动态充电,直流电流。
B. Tharun Kumar先生1,Yaski Vamshi先生2,M。Teja3先生,J。Mohan博士4. Electronics and Communication Engineering部门,航空工程学院,海德拉巴,邓达巴德(Dundigal-500043)摘要:在本文中,一项新技术据称是一项新技术,该技术被无线电车充电站系统。在此过程中,它经过测试并验证了电动汽车的电池充电器。在可持续运输领域开发的无线电动汽车充电技术涉及无线充电电动汽车领域。此过程是电感功率传输,将能量从充电垫发送到电动汽车的电池,而无需提供任何电线或适配器。无线充电的好处包括便利性,因为不需要物理连接器,它会降低充电端口的磨损;消除可能导致电击的环境因素的暴露的安全性。通过充电器和电线的电池电量充电是方便,危险和昂贵的。目前的汽油和汽油发动机技术车辆还会造成空气和噪声污染,此外还有助于温室气体。本文通过电感耦合方法呈现电池的无线电池充电站。在此部分中,在使用MOSFET并控制开关操作的发射机线圈和接收器线圈之间使用了一个驱动电路。因此,确保在发射器线圈中以及每当车辆不存在时打开和关闭。该电台可实现67%的效率水平,可靠性,可靠性,低维护和较长的产品寿命。关键字:电源传输;电vechile;电池充电;无线充电等
共享汽车和自动驾驶。通过采用自主驾驶技术,它可以在整个校园内实现高效的交付,到达宿舍,图书馆和教学建筑物,从而增强了教师和学生生活的便利。最初,该方法着重于共享AI车辆的组装方法和美学设计,制作了迷你车的模型结构。随后,研究研究了两个关键领域:充电机制和导航途径。通过集成真实的校园布局,将绘制出车辆的最佳路线,包括指定的对接站,并开发了用于选择路径选择的算法。利用太阳能电池和充电端口的结合,纸张既贴有充电问题,又通过极端天气条件对车辆运营状况产生的不利影响。分析表明,共享的AI车辆与将技术融入校园生活,拥有广泛的应用范围并满足社会需求的趋势相一致。
Acronyms 6 List of Figures 7 List of Tables 8 Chapter 1: Introduction 9 1.1 Thesis motivation 10 1.2 Thesis objectives and contribution 12 1.3 Charging structure design 13 1.4 Thesis outline 17 Chapter 2: EV charging system and RES integration: An Overview 19 2.1 Introduction 20 2.2 EV charging framework and standards 21 2.3 Hybrid sources-based charging system architecture: Literature review 25 2.4 A comparison of charging systems architectures 35 2.5 Hierarchical Control for EVs Charging System 37 2.6 Conclusion 45 Chapter 3: EV charging system modelling and control 47 3.1 Introduction 48 3.2 PV system modelling and MPPT control 49 3.3 BSS /EV battery and their power conversion step 60 3.4 AC/DC interlinking converter for the EVs charging station 65 3.5 Conclusion 69 Chapter 4: Lithium-ion Battery modelling and SoC estimation 70 4.1 Introduction 72 4.2 Lithium-ion Battery modelling 72 4.3 SoC estimation method for lithium-ion battery 77 4.4 Simulation results and discussion 81 4.5 Conclusion 83 Chapter 5: Energy Management of proposed EVs charging model 84 5.1 Introduction 85 5.2 General operating modes of charging station 86 5.3 Rule- based Energy management system (REMS) algorithm 88 5.4 Results and discussion 96 5.5 A Comparison of the PV BSS grid-based REMS with网格收费103第6章:结论与讨论106参考112
Gurugram,2025年2月11日:MG致力于使电动汽车(EV)所有权可访问,并领导了多项举措以支持这项任务,例如提供免费的家庭充电器,公共和社区充电器的安装,为统一的充电平台安装,并为MG Windsor EV客户提供免费的公共收费,以供限时使用MG Windsor EV客户。但是,为了解决超出我们公平使用政策的增加的使用实例,并且由于不建议的充电惯例而冒着电池健康的风险,我们正在更新新的公共充电使用限额。这种调整使我们能够继续以公平的用法提供充电,同时防止滥用并确保所有合格的MG Windsor EV所有者的公平访问权限,从而增强整体充电体验。
X射线光电子光谱(XPS)是一种用于研究聚合物电解质膜燃料电池和电解剂中催化剂的表面特性和组成的常用技术。XPS分析催化剂层(CLS)越来越多地使用催化剂和支持组成和结构之间的关系,催化剂墨水组成,CL制造方法和参数以及它们的性能和耐用性。基于IR的CLS的表征由于多种因素,包括对IR 4F光谱的解释,O 1S光谱中的催化剂和离子体物种的解释以及离子体对X射线损伤的敏感性,这会导致催化剂ionomer界面的变化,通常比样本之间的差异更大。本研究报告了一种详细的XPS表征的方法,基于IR的CL,建立定量指标,并提供有关催化剂离子体界面的见解,该界面可以与多种处理和性能指标相关。具体来说,我们已经评估了使用几种常见CL涂层方法制备的CL中的表面组成差异。我们还研究了用不同的催化剂负荷和电化学测试后选定样品制备的CL。通常,我们发现了元素比和从O 1S光谱的详细分析得出的趋势的良好协议。此外,O 1S分析揭示了催化剂组成的差异,解决了与IR 4F光谱解释有关的一些挑战和局限性。
宾夕法尼亚州巴克斯县索尔伯里镇法令,增加第 6 章并修订第 22 章第 5 部分,涉及电动汽车充电站,鉴于宾夕法尼亚州二级镇法典第 1516 节(53 PS 第 66516 节)规定,索尔伯里镇监事会(“监事会”)的法人权力包括根据 1968 年 7 月 13 日的法案(PL 805,第 247 号),即“宾夕法尼亚州市政规划法规”,通过分区、细分和土地开发法规规划该镇的发展;鉴于二级乡镇法典第 1601 条规定,监事会可通过法令行使乡镇的一般或具体权力,且通过颁布后续法令,监事会可修正、废除或修订现有法令 (53 PS 第 66601 条);鉴于拟议修正案旨在履行乡镇根据宾夕法尼亚州宪法第一条第 27 条所承担的义务,并保护乡镇公民的公共健康、安全和福利;鉴于拟议修正案已根据市政规划法典第 609 条 (53 PS 第 10609 条) 进行了公布、审议和审查;因此,考虑到上述情况,现由宾夕法尼亚州巴克斯县索尔伯里镇监事会颁布并颁布如下:I. 镇法令第 6 章现全部替换,并附加以下内容:
随着人们对环境问题的日益关注、能源节约和全球变暖,政府、企业和个人都开始将可再生能源视为重要支柱。如今,公众和学者都非常关注电动汽车。可再生能源包括地热能、水力发电和海洋能,以及风能和太阳能。DC-DC 双向转换器或升压转换器是电力电子转换器的例子,它们可以控制捕获能量的流动,并可用于各种应用。为了捕获这些能量,这些转换器是必不可少的。过去,所有这些转换都是由可控硅整流器 (SCR) 管理的。MOSFET 和 IGBT 等现代开关现在可以在很宽的频率范围内工作 [1]。双向 DC-DC 转换器是不间断电源 (UPS)、燃料电池汽车和插电式混合动力汽车 (PHEV) 电源转换系统的重要组成部分。通过将低压电池转换为高压电源来为家用设备充电时,必须使用 DC-DC 转换器。双向 DC-DC 转换器有两种类型:隔离式和非隔离式 [2]。单相非控制整流器广泛应用于许多电力电子转换中。它们通常用作非调节直流电压的中间源,随后进行调节以产生调节直流或交流输出。它们通常被证明是强大而高效的功率级。然而,它们确实有许多缺点。主要问题是它们无法调节输出直流电压和电流幅度,而输入交流电压和负载参数保持不变。它们可以