StormR 是一个 R 包,可轻松从提供的数据库中提取风暴轨迹数据,并生成根据风暴轨迹数据和参数气旋模型重建的地面风场(速度和方向)。然后,StormR 允许我们计算三个汇总统计数据(最大持续风速、功率耗散指数以及在气旋生命周期内达到给定翼速的风的暴露时间)并绘制结果。我们建议使用 IBTrACS(国际气候管理最佳轨迹档案)数据库作为输入( Knapp 等人,2010 年、2018 年)。该数据库提供了自 1841 年以来具有 3 小时时间分辨率的相当全面的热带风暴和气旋记录。但是,只要提供必填字段,就可以使用任何风暴轨迹数据。
08 表示由操作员操作的 FTS(地面指挥的 FTS);09 表示由飞行终止装置操作的 FTS(自主 FTS);04 表示 FTS 信号/指令传输系统的地面执行器(地面指挥的 FTS);05 表示用于提供轨迹数据的车辆传感器(自主或地面指挥的 FTS);06 表示用于提供轨迹数据的地面传感器(地面指挥的 FTS)。
5 *根据 GWI/内部市场对资本支出(不包括建筑工程、设备和化学品运营支出)的估计,对整个服务市场的估计所有轨迹数据均以恒定汇率表示
o 本报告中包含的住房交付和轨迹数据是 Stantec 对 LBW 提供的信息的解读。o 由于时间原因,2023/2024 财年的住房交付和轨迹数据为估计值,在年终对账结束后可能会进行调整 o 2024/25 财年至 2032/33 财年之间的住房交付和轨迹数据是 Stantec 对 LBW 提供的信息的解读,以理论估计值的形式提供,可能会进行调整。o LBW 提供的数据表明,NEB 地区过去和未来的住房交付都是公寓(而不是房屋),并且将继续是公寓(而不是房屋)。o 预测的开始日期是住房轨迹上所述的单元完工年份结束前一年。例如,如果这些单元将于 2030/31 年完工,则预测开始日期为 2030 年 3 月 31 日。o 对于包含多个完工日期的场地,预测开始日期为最迟单元完工年份的年底前一年。o 假设所有场地都已完工,这意味着如果关键场地停滞或提前用于其他用途,则假设的交付和资金可能会被夸大。o 如果没有关于何时授予许可的数据,或者没有完工预测,则日期已被推迟到日期范围的结束。
本文介绍了一个综合数据集的开发,该数据集捕获了自动驾驶汽车(AV)和交通控制设备之间的相互作用,特别是交通信号灯和停车标志。源自Waymo Motion数据集,我们的工作通过提供有关AVS如何导航这些流量控制设备的现实轨迹数据来解决现有文献中的关键差距。我们提出了一种从Waymo Motion数据集中识别和提取相关交互轨迹数据的方法,该数据集并入了37,000多个实例,并带有交通信号灯和44,000个带有停车标志的实例。我们的方法包括定义规则以识别各种相互作用类型,提取轨迹数据,并应用基于小波的DeNoising方法来平滑加速度和速度概况并消除异常值,从而提高轨迹质量。质量评估指标表明,在所有相互作用类别中,这项研究中获得的轨迹在加速度上具有异常比例,而混蛋轮廓降低到接近零水平。通过公开提供此数据集,我们旨在解决包含带有交通信号灯和标志的AV交互行为的数据集中的当前差距。基于有组织和发布的数据集,我们可以在与交通信号灯和标志互动时对AVS行为有更深入的了解。这将促进对现有运输基础架构和网络的AV集成的研究,从而支持开发更准确的行为模型和仿真工具。
1985 年,Russell Rzemien、Jay F. Roulette 和 Paul R. Bade 设计了最初的 MK 92 MOD 6 CDC。CDC 记录雷达回波的同相和正交分量,以及其他相关雷达信息。雷达制造商构建了定制的雷达接口板,从 FCS 中提取所需的雷达信号。CDC 能够与 CAS 搜索、CAS 跟踪或 STIR 接口。CDC 一次只能从其中一个雷达收集数据。最初,数据存储在缓冲区中,然后传输到九轨磁带上。几年后,原来的磁带驱动器被更快、更密集的 8 毫米磁带驱动器取代,从而可以记录更多的数据。由于数据传输到磁带的速度不能像从雷达接收数据那样快,因此只能记录一部分数据。在收集搜索数据时,仅记录操作员指定的范围和方位有限的扇区内的数据。最初,扇区大小不能比 10 ° x 15 mi 大太多,具体取决于雷达波形。在收集轨迹数据时,CDC 会在指定的时间内连续收集数据,然后将数据下载到磁带并重复该循环。当 CDC 将数据下载到磁带时,不会记录雷达在此期间发送的轨迹数据。多年来,CDC 用于许多数据收集练习和测试活动。虽然用于 CAS 搜索收集的扇区大小相对较小,并且可收集轨迹数据的时间相对较短,但事实证明这些数据非常有用。困扰 MOD 6 系统的问题之一是,如果没有大型 CAS 搜索收集扇区,则很难进行分析。为了充分描述问题并评估所提出的方法,需要一个至少为 25 ° x 全范围的扇区大小。更大的收集扇区需要设计和构建新的 MOD 6 CDC。 Russell Rzemien、Ronald J. Clevering、Brian A. Williamson 和 Daryl I. Tewell 于 1994 年设计并建造了新的 MOD 6 CDC。雷达和 CDC 之间的接口保持不变。新的 CDC 利用
1985 年,Russell Rzemien、Jay F. Roulette 和 Paul R. Bade 设计了最初的 MK 92 MOD 6 CDC。CDC 记录雷达回波的同相和正交分量,以及其他相关雷达信息。雷达制造商构建了定制的雷达接口板,从 FCS 中提取所需的雷达信号。CDC 能够与 CAS 搜索、CAS 跟踪或 STIR 接口。CDC 一次只能从其中一个雷达收集数据。最初,数据存储在缓冲区中,然后传输到九轨磁带上。几年后,原来的磁带驱动器被更快、更密集的 8 毫米磁带驱动器取代,从而可以记录更多的数据。由于数据传输到磁带的速度不能像从雷达接收数据那样快,因此只能记录一部分数据。在收集搜索数据时,仅记录操作员指定的范围和方位有限的扇区内的数据。最初,扇区大小不能比 10 ° x 15 mi 大太多,具体取决于雷达波形。在收集轨迹数据时,CDC 会在指定的时间内连续收集数据,然后将数据下载到磁带并重复该循环。当 CDC 将数据下载到磁带时,不会记录雷达在此期间发送的轨迹数据。多年来,CDC 用于许多数据收集练习和测试活动。虽然用于 CAS 搜索收集的扇区大小相对较小,并且可收集轨迹数据的时间相对较短,但事实证明这些数据非常有用。困扰 MOD 6 系统的问题之一是,如果没有大型 CAS 搜索收集扇区,则很难进行分析。为了充分描述问题并评估所提出的方法,需要一个至少为 25 ° x 全范围的扇区大小。更大的收集扇区需要设计和构建新的 MOD 6 CDC。 Russell Rzemien、Ronald J. Clevering、Brian A. Williamson 和 Daryl I. Tewell 于 1994 年设计并建造了新的 MOD 6 CDC。雷达和 CDC 之间的接口保持不变。新的 CDC 利用
1985 年,Russell Rzemien、Jay F. Roulette 和 Paul R. Bade 设计了最初的 MK 92 MOD 6 CDC。CDC 记录雷达回波的同相和正交分量,以及其他相关雷达信息。雷达制造商制造了定制雷达接口板,从 FCS 中提取所需的雷达信号。CDC 能够与 CAS 搜索、CAS 跟踪或 STIR 进行交互。CDC 一次只能从其中一个雷达收集数据。最初,数据存储在缓冲区中,然后传输到九轨磁带中。几年后,原来的磁带驱动器被更快、更密集的 8 毫米磁带驱动器取代,从而可以记录更多数据。由于数据传输到磁带的速度不能和从雷达接收数据的速度一样快,因此只能记录一部分数据。收集搜索数据时,记录的数据仅限于操作员指定的范围和方位有限的扇区内。最初,扇区大小不能大于 10° x 15 英里,具体取决于雷达波形。收集轨迹数据时,CDC 会在指定的时间段内连续收集数据,然后将数据下载到磁带并重复该循环。当 CDC 将数据下载到磁带时,不会记录雷达在此期间发送的轨迹数据。多年来,CDC 被用于许多数据收集练习和测试活动。尽管 CAS 搜索收集扇区相对较小,并且收集轨迹数据的时间相对较短,但事实证明这些数据非常有用。困扰 MOD 6 系统的问题之一是,如果没有大型 CAS 搜索收集扇区,则很难进行分析。为了充分描述问题并评估所提出的方法,扇区大小至少为全范围 25°。更大的收集扇区需要设计和建造新的 MOD 6 CDC。Russell Rzemien、Ronald J. Clevering、Brian A. Williamson 和 Daryl I. Tewell 于 1994 年设计并建造了新的 MOD 6 CDC。雷达和 CDC 之间的接口保持不变。新 CDC 利用了
1985 年,Russell Rzemien、Jay F. Roulette 和 Paul R. Bade 设计了最初的 MK 92 MOD 6 CDC。CDC 记录雷达回波的同相和正交分量,以及其他相关雷达信息。雷达制造商制造了定制雷达接口板,从 FCS 中提取所需的雷达信号。CDC 能够与 CAS 搜索、CAS 跟踪或 STIR 进行交互。CDC 一次只能从其中一个雷达收集数据。最初,数据存储在缓冲区中,然后传输到九轨磁带中。几年后,原来的磁带驱动器被更快、更密集的 8 毫米磁带驱动器取代,从而可以记录更多数据。由于数据传输到磁带的速度不能和从雷达接收数据的速度一样快,因此只能记录一部分数据。收集搜索数据时,记录的数据仅限于操作员指定的扇区内,该扇区的范围和方位有限。最初,扇区大小不能比 10° x 15 英里大很多,具体取决于雷达波形。收集轨迹数据时,CDC 会在指定的时间段内连续收集数据,然后将数据下载到磁带并重复该循环。当 CDC 将数据下载到磁带时,不会记录雷达在此期间发送的轨迹数据。多年来,CDC 被用于许多数据收集练习和测试活动。尽管 CAS 搜索收集的扇区大小相对较小,并且收集轨迹数据的时间相对较短,但事实证明这些数据非常有用。困扰 MOD 6 系统的问题之一是,如果没有大型 CAS 搜索收集扇区,就很难进行分析。为了充分描述问题并评估所提出的方法,扇区大小至少为全范围的 25°。更大的收集扇区需要设计和建造一个新的 MOD 6 CDC。Russell Rzemien、Ronald J. Clevering、Brian A. Williamson 和 Daryl I. Tewell 于 1994 年设计并建造了新的 MOD 6 CDC。雷达和 CDC 之间的接口保持不变。新的 CDC 利用了