使用Proteome Discoverer 3.2软件和Sequest®HT搜索算法进行数据分析。肽的修饰包括用于HELA的氨基甲基甲基化(C)的动态修饰,用于蛋白质混合物的羧甲基化(C),TMTPRO标签(N-末端,K)和MET氧化。FDR阈值在渗透剂节点中设置为1%,以识别肽和蛋白质鉴定的高置信度。在报告基因离子量化器节点中指定了11 ppm的记者离子峰积分耐受性,并使用新的集成的报告频道控制通道范围的范围范围范围进行了剥离和非剥离的控制通道,对剥离和非置换通道组的归一化进行了归一化。
Oerlikon Group 2024半年概述在2024年上半年,该集团的订单摄入量略同比同比下降3.3%,至1 2.94亿瑞士法郎,销售额下降了18.9%,至1 16600万瑞士法郎,归因于聚合物处理解决方案市场的短暂性疲软。由于聚合物加工解决方案的低迷,无法通过改善地面解决方案利润率弥补的聚合物加工解决方案的低迷,占销售额的1.87亿瑞士法郎,占销售额的16.0%。由于EBITDA较低,今年上半年的净利润下降了48.1%。表面解决方案部门的表面解决方案尽管市场疲软,但以恒定的汇率汇率达到了0.5%的订单同比增长。客户购买行为由于软工业活动而保持谨慎。在欧元区制造PMI时,他们在收缩中保持中立水平,在美国和中国处于中立水平。以恒定的汇率增加,该部门的销售额同比同比增长2.1%。在Oerlikon在航空业的设备和材料业务中的强劲表现尤其支持增长。运营EBITDA利润率提高了228个基点,尽管投入成本较高,但仍达到18.7%。效率,创新,定价和混音支持了增加。关键数字截至2024年6月30日(CHF百万)1
请注意:经过修订的2023年评估和管理PCOS的国际指南建议血清抗肿瘤激素(AMH),一种血液测试,作为PCOM的替代标记。AMH的效用仅限于特定上下文,因为PCOS的诊断阈值需要标准化。女性中参与AMH测量的实验室应使用人群并分析特定的截止。我们的团队正在与Alberta Precision实验室紧密合作,以在PCOS中为AMH建立特定的临界值。建立此途径将更新此途径。
摘要:自 2018 年场发射电推进 (FEEP) 推进器首次飞行以来,已发射了 200 多个基于 FEEP 的推进系统,其中包括 190 个传统 ENPULSION NANO 系统、18 个更高功率的 MICRO 系统和 9 个新型 NANO R 3 /AR 3。后者是传统 NANO 的后继产品,AR 3 版本允许直接推力矢量能力而无需活动部件。本文报告的所有推进系统均基于被动供给的铟基液态金属 FEEP 技术。本文报告了最新的发射和飞行遗产统计数据。我们介绍了在不同应用和轨道中使用的不同推进系统的遥测数据,并介绍了在 LEO 上对传统 NANO 推进器进行 1350 小时累计点火后进行的成功的在轨提取器清洁程序。
摘要 近年来,异物闯入铁路和机场跑道事件频发,这些物体包括行人、车辆、动物和杂物等。本文介绍了一种改进的YOLOv5架构,结合FasterNet和注意力机制,增强对铁路和机场跑道上异物的检测。本研究提出了一个新的数据集AARFOD(航空和铁路异物检测),结合了两个用于检测航空和铁路系统中异物的公共数据集,旨在提高异物目标的识别能力。在这个大型数据集上的实验结果表明,与基线YOLOv5模型相比,所提出的模型性能有显著提升,降低了计算要求。改进后的YOLO模型的精度显著提高了1.2%,召回率提高了1.0%,mAP@.5提高了0.6%,而mAP@.5-.95保持不变。参数减少了约25.12%,GFLOP减少了约10.63%。在消融实验中发现,FasterNet模块可以显著减少模型的参数数量,同时注意力机制的引用可以减缓轻量化带来的性能损失。
本出版物仅供一般参考。所提供的信息不是法律建议,您使用它不会建立律师与客户的关系。所有法律事务都是独一无二的,本出版物中描述的任何先前结果并不保证未来事务的类似结果。DLA Piper 是一家全球性律师事务所,通过 DLA Piper LLP (US) 及其附属实体运营。有关更多信息,请参阅 dlapiper.com。律师广告。版权所有 © 2023 DLA Piper LLP (US)。保留所有权利。2023 年 6 月 26 日 | MRS000215334_v1LM
摘要:表面裂纹是高速导轨(HSR)平板轨道中的典型缺陷,可以导致结构性恶化并降低轨道系统的服务可靠性。但是,如何有效检测和量化表面裂纹的问题目前尚未解决。在本文中,采用了一种基于红外热成像的新型裂纹检测方法来量化轨道板板上的表面裂纹。在这种方法中,首次使用非缩放的Contourlet变换(NSCT)基于图像 - 增强算法处理的红外摄像头的轨道平板的热合器,并且裂缝是通过边缘检测算法的。接下来,为了定量检测表面裂纹,提出了一种像素安排方法,从而可以获得裂纹宽度,长度和面积。最后,在实验室测试中验证了所提出方法在不同温度下的检测准确性,在该测试中,倒入平板的比例模型,并使用温度控制的柜子来控制温度变化过程。结果表明,所提出的方法可以有效地增强图像中表面裂纹的边缘细节,并且可以有效地提取裂纹区域。裂纹宽度的量化的准确性可以达到99%,而裂纹长度和面积的量化的准确性为85%,这基本上满足了HSR-SLAB-TRACK-TRACK-TRACK检查的要求。这项研究可以打开基于IRT的轨道板检查在HSR操作中的可能性,以提高缺陷检测的效率。
过去几年,各国政府对外国卫星与敏感的国家安全卫星进行近距离接触(即交会和近距离操作 (RPO))表示了越来越多的担忧。这些活动主要发生在地球同步轨道 (GEO) 区域,执行导弹预警、安全通信和情报收集任务的敏感卫星就位于该区域。与另一个国家的卫星进行交会和近距离操作可能会加剧当前的地缘政治紧张局势或导致不必要的升级。本文概述了 RPO 和 GEO 区域其他卫星机动的基本原理。它提出了一种对不同类型 RPO 进行分类的分类法,并分析了处理它们的四种政策选择:改进的空间态势感知、生命模式信息共享、禁区和守护卫星。
关键词:轨道式振荡生物反应器 (OSB)、禽类 AGE1.CR.pIX 悬浮细胞、流感病毒、动物疱疹病毒、腺相关病毒 (AAV)、人胚胎肾 (HEK) 293 细胞、一次性灌注至高细胞密度、制造。悬浮细胞的预培养在摇瓶中成功完成。特别是新开发的设计细胞在高摇动频率下在摇瓶中传代多达 100 次,然后完美适应在具有 pH 控制和最大氧气供应(通常高于 80% pO 2 )的 CO 2 培养箱中生长。当它们随后被转移到搅拌槽生物反应器进行扩大时,特定细胞生长率通常较低,并且细胞对通过酸/碱添加和由于潜水器放气(气泡)而产生的剪切应力的 pH 控制变得敏感。禽类 AGE1.CR.pIX 和人类 HEK 293 细胞也出现了这种情况。为了避免这些问题,评估了在振荡模式下的扩大规模。这里我们介绍了 SB10-X OSB 生物反应器在袋子设计和控制单元改进方面的最新进展。引入了一种新的控制策略,从而可以更快、更精确地控制 pH 和 DO。此外,还优化了灌注袋,以便可以轻松连接一个或两个 TFF ATF 系统。这两项发展都带来了更强大的 SB10-X 系统,可以轻松执行批量、补料分批或灌注运行。在 10 L 一次性标准袋中,在化学定义的培养基 CD-U3(Biochrom-Merck,德国)中以 70 rpm 的摇动频率培养 Avian AGE1.CR.pIX 细胞(ProBioGen AG,德国)。对于灌注,使用了交替切向流系统(ATF2,Repligen,500 kDa 截止值)。感染流感病毒 A/PR/8/34 (H1N1) 后,MOI 为 0.001,工作体积从 5 升增加到 9 升,同时保持灌注。使用不同的填充体积评估 25 和 50 x 10 6 细胞/毫升的细胞浓度,以了解顶部空间通气的影响。总体而言,可以获得 3500 个病毒体/细胞的非常高的细胞特异性病毒产量,导致 HA 滴度高达 3.7 log 10(HA 单位/100 µL),感染滴度高达 8.8 x 10 9 TCID 50 /毫升。基于重组 AAV 的载体不仅是基因治疗目的的合适载体,而且还能够诱导针对各种抗原的强烈、主要是细胞的免疫反应。到目前为止,AAV 生产主要使用瞬时转染的贴壁人类 HEK 293 细胞(例如在细胞堆栈中),这对大规模 AAV 生产来说是一个重大挑战。在这里,我们测试了内部适应悬浮生长的 HEK 293 细胞,以通过一种允许简单扩大规模的过程生产 AAV9 的能力。因此,HEK 293 悬浮细胞在 5 L 化学定义的无血清培养基中培养,细胞密度为 1 x 10 6 个细胞/毫升,使用 SB10-X OSB 生物反应器,摇动频率为 65 rpm。24 小时后以 70 rpm 的振荡频率进行聚乙烯亚胺 (PEI) 介导的三重转染(包括 GFP 报告基因)。最后,转染后 48 小时,收获细胞和上清液进行 AAV 分离,并测定裂解物中 DNase I 抗性载体颗粒 (DRP) 的数量。由于转染效率高(基于 GFP 报告基因的转染率 >90%)且 SB10-X 系统中整个批处理过程性能良好,因此达到了 1.4 x 10 12 DRP/ml 或 7 x 10 15 DRP/批(5 L)范围内的制造相关 AAV 滴度。总之,在轨道上生产病毒可能是创新疫苗制造的一种有吸引力的替代方案。