LightSail 计划包括开发、发射和运行两颗私人资助的 3U 立方体卫星,旨在推动太阳帆技术的发展。第一艘 LightSail 航天器主要用于演示太阳帆部署过程,于 2015 年春季成功完成近地轨道任务。第二艘 LightSail 任务计划于 2017 年发射,主要目标是演示地球轨道上的帆控制并提高远地点。LightSail 由行星协会管理,由世界各地的会员和私人捐助者资助,是有史以来最雄心勃勃的私人资助太阳帆计划。通过展示从 3U 立方体卫星平台部署和控制太阳帆的能力,LightSail 计划推动太阳帆成为一种可行的太空小型卫星推进技术。本文概述了 LightSail 计划,描述了航天器设计,并讨论了 LightSail 1 的初始试飞结果。
地面、低地球轨道及更远的地方 人类航天的下一步是重返月球和火星。几十年来,人类都没有飞越过范艾伦带。为了准备在低地球轨道 (LEO) 之外进行更长时间的人类任务,还有很多工作要做。新技术为研究和科学发现提供了机会,使人类能够安全地深入太空。使用低地球轨道上的微重力平台,例如国际空间站这个月球门户,可以利用我们国家的能力来克服各种复杂而困难的生物医学、物理科学和工程相关的挑战。美国政府对研究的战略性、富有成效和不间断的承诺对于利用太空环境推进美国科学和创新议程至关重要。微重力研究在生物学和物理科学中的重要性 生物学和物理科学中的基础微重力研究是通向创新生物学和技术突破的渠道。
将导轨安装在机架中时,导轨可调节性范围是相同的,无论系统深度如何,由于该功能在安装系统之前不使用该功能。如果安装在轨道上的系统需要此功能,则最小导轨可调节性限制会因滑梯车身需要滑动以支持系统所需的旅行量而增加。最小铁路可调节性限制记录在此通知结束时列出的资源中。具有使用该功能的系统的用户可能会观察到系统在机架中几乎完全安装时,每个导轨中的弹簧中有少量的额外阻力。对于大多数轨道,观察到电阻的实例在最终的55毫米翻译中,在猛击闩锁与轨道接合之前。
由于低地球轨道和地球静止轨道的自然资源有限,空间碎片正成为当前和未来空间活动的威胁。照此速度,卫星发射数量的增加和空间碎片数量的增加将超过地球轨道的承载能力。因此,凯斯勒教授提出了一个理论,认为低地球轨道上的空间物体密度足以引发无法控制的连锁碰撞(Kessler & Cour-Palais,1978 年)。到目前为止,空间监视网络正在追踪 28,600 个碎片物体,估计大于 10 厘米的碎片物体数量为 34,000 个,1 厘米至 10 厘米之间的空间碎片物体数量为 900,000 个,大于 1 毫米至 1 厘米的空间碎片物体数量为 1.28 亿个(欧洲航天局,2021 年)。
低地球轨道 (LEO) 卫星数量的不断增加增强了全球通信和地球观测,支持太空商业是许多政府的首要任务。与此同时,低地球轨道卫星数量的激增对天文观测和研究以及暗夜静谧天空的保护产生了负面影响。这些卫星将阳光反射到光学望远镜上,其无线电发射影响射电天文台,危及我们通过天文学获得重要科学发现的机会。天空外观的变化也影响着我们的文化遗产和环境。地面天文台和低地球轨道上的太空望远镜都受到影响,由于卫星星座的全球性,地球上没有任何地方可以逃脱其影响。受干扰最小的暗夜静谧天空 1 对于开展天文学基础研究以及行星防御、技术开发和高精度地理定位等重要公共服务至关重要。
美国和苏联在 20 世纪 80 年代试验了反卫星 (ASAT) 导弹。美国上一次进行此类试验是在 1985 年,主要是因为产生的碎片可能会损害轨道上的航天器。中国于 2007 年成为第三个试验反卫星武器的国家。军事指挥官表示,这次事件是一个转折点,因为它揭示了美国对卫星的依赖所带来的脆弱性。2007 年后,中国和俄罗斯继续建设其军事太空能力。十年后,国会和政府中太空部队的倡导者提议建立一支能够应对日益增加的太空、网络空间和导弹威胁的部队。他们还试图简化太空采购决策流程。2020 财年国防授权法案于 2019 年 12 月 20 日成立了该部队。
旨在研究太空天气对卫星系统的影响的研究揭示了太空天气的几个重要影响。其中一些效果包括:地磁诱导的电流:这些电流可能会破坏卫星系统在低地球轨道上的操作,因为它们靠近地球表面。由于表面充电和电弧引起的辐射效应:来自各种来源的辐射会损坏卫星系统,这就是为什么在卫星设计中需要具有辐射保护的组件。辐射对人类健康的影响。电离层对卫星通信和导航的影响:电离层中的湍流可能会导致电离层等离子体密度的不一致,这可能会折射传入的无线电信号并引起电离层干扰。热圈效应:磁性风暴期间高层大气的膨胀会产生大气阻力,这可能会导致海拔高度或卫星轨道的干扰[10]。
卫星容易受到来自对手的一系列威胁,这些威胁可能会阻止或破坏太空资产的运行,甚至摧毁它们。这种威胁可能来自放置在类似轨道上的对手卫星,增加了拦截、干扰通信或干扰运行的可能性。卫星曾被使用激光或动能武器从地面摧毁,例如 2019 年印度反卫星武器试验、2007 年中国反卫星 (ASAT) 试验或 2008 年 USA-193。目前,从低地球轨道到地球静止轨道的卫星容易受到动能攻击。为了发现和应对此类威胁,西方民主国家启动了多项计划:美国自我意识/太空态势感知 (SASSA)、保护宝贵资产的美国保镖卫星、法国——一项新的反卫星计划,包括为卫星配备态势感知摄像头和使用激光使威胁对手眼花缭乱的能力。