1 Department of Physics and Astronomy, University of Sussex, Sussex House, Falmer, Brighton BN1 9RH, United Kingdom 2 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom 3 Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNR, Sorbonne Université Université de Paris, Paris 75005,法国4 75005,普林斯顿大学,佩顿霍尔,普林斯顿,新泽西州佩顿大厅,美国,美国美国5号荷兰德计算机研究所中心,纽约州纽约市162 5楼162 5楼,美国纽约市10010年,美国6美国纽约州粒子和粒子物理学部,纽约州纽约州,纽约州,纽约州。物理学,卡内基·梅隆大学,宾夕法尼亚州匹兹堡15213,美国8 DeepMind,伦敦,英国∗作者,应向其解决任何信件。
太空电梯的建设将是巨大成本和风险的行星工程的鼓舞人心的壮举。但是,好处会超过成本和风险吗?确切地说,建立这种结构的目的是什么?例如,如果太空电梯可以每天提供无推进剂(免费释放)轨道转移到太阳系及其他行星的轨道转移该怎么办?我们认为,这种好处可能会超过成本和风险。但是太空电梯可以提供这样的服务吗?在本手稿中,我们检查了3层太空电梯启动系统设计,并对使用此类设计的航天器的轨道力学提供了详细的数学分析。我们发现所有设计中的限制因素是过渡到黄道平面的问题。对于第1级和第2层,我们发现可以将自由释放转移到所有外行星都是可能的,从而达到了远远超出了当前基于地球的火箭技术的能力,但由于行星对齐而导致的覆盖率显着。对于第3层电梯,我们发现每天都有可能快速的免费释放转移到太阳系中的所有行星。最后,我们表明,第2层和3个空间电梯可以潜在地使用配重执行上演的弹弓手术,从而提供了速度乘数,该速度乘数可以大大减少到外行星和星际目的地的运输时间。
孩子们喜欢太空探索,但他们不一定知道火箭和航天器实际上是如何工作的。孩子们可以根据物理学使用以太空为主题的游戏,以了解有关金属圆柱体如何充满推进剂移动和在太空中相互作用的方式,同时仍然很开心。我们谈论我们的示例视频,重点关注儿童太空迷,以帮助他们开始。我们使用当前在稳定版本中可用的游戏,首先从基本概念2D游戏(例如Simpleerockets)开始,然后再使用Space -Flight Simulator(也是2D)。从那里,我们在Simpleerockets 2中提供了发展到3D运动的示例,现在称为Juno:New Origins,Kerbal Space Program和Kerbal Space Program的新版本2。我们将介绍如何教孩子Delta-V和特定冲动等概念。我们的目标是帮助孩子和老师从诸如亚轨道轨迹等简单概念和轨道上发展,再到火箭舞台,轨道转移,会合,登陆,降落以及最终的更先进的概念,最终,在跨层次的trips上获得的资源保护和效率。
讲师: Andrew Rhodes 博士 办公室:ESB 829 电子邮箱:Andrew.Rhodes@mail.wvu.edu 课程: 时间安排:周一/周三/周五 9:00-9:50 地点:ESB G102 学分:3 小时 先决条件:MAE 316 工程系统分析 成绩:D- 或更高 教科书:推荐参考书:《工程专业学生的轨道力学》,第 4 版,Curtis 编著。电子书可通过 WVU 图书馆获取。 描述 介绍航天和飞行器的基本概念,强调性能方面和基本分析表达式。运载火箭、轨道力学、大气再入、稳定、热、功率和姿态控制的常见分析方法和设计标准。 技术:需要网络摄像头、数字/手机扫描仪和互联网接入。 MATLAB 2021 或更新版本,可通过 WVU 免费获得(https://its.statler.wvu.edu/policies-and-procedures/matlab-software) 助教 Sam Cyphert 办公室:Zoom https://wvu.zoom.us/j/95383482769 电子邮件:sc0120@mix.wvu.edu 办公时间:办公时间以面对面、电子邮件、视频或语音通话的方式进行。 讲师:MW 11:00-13:00 助理:R 14:00-15:00 如果讲师或助理在这些时间不在家,则将在同一周分配替代时间。
航空航天工程理学学士学位成功地培养了未来的航空航天工程师,使他们能够在多学科团队中工作,以创新的方式设计产品和开展研究,从而对地区、国家和全球产生积极影响。该课程侧重于将工程原理应用于飞机、导弹和航天器等航空航天飞行器的设计、制造和功能。学生在接触轨道力学、空间结构和火箭推进的同时,深入了解空气动力学、工程材料和工艺、结构、推进、飞行力学和控制。
航空航天工程在大气和太空飞行的基础上点燃学生的学习。航空航天工程是PLTW工程计划的专业课程之一。课程在大气和太空飞行的背景下加深了工程专业学生的技能和知识。学生通过设计和测试与飞行相关的组件(例如机翼,推进系统和火箭)来探索空中和空间中的飞行基础。他们学习轨道力学概念,并通过使用行业标准软件创建模型来应用它们。他们还将航空航天概念应用于风力涡轮机和降落伞等替代应用。学生模拟了探索行星的操作进展,包括用模型卫星创建地形地图,并使用地图使用自主机器人执行任务。
移动和机动。卫星可能能够在轨道上进行机动,从而阻止对手跟踪和瞄准它们。机动能力受到机载燃料限制、轨道力学以及规划和执行机动所需的时间的限制。此外,卫星的重新定位通常会降低或中断其任务。移动地面节点的使用使对手定位和瞄准指挥和任务数据处理中心以及可部署太空能力的尝试变得复杂。然而,这些地面段节点的移动也可能影响系统的能力,因为它们必须仍然保持与相关空间段的视线。链路段中的移动和机动可能包括改变频率、将用户转移到其他卫星(无论是商用还是军用)以及移动点波束或改变波束形状等操作。移动和机动还可以利用备用通信路径,如光纤或战区通信架构,如视距或机载中继。
ASTRON 7AB 天体物理学导论:从行星到宇宙学 4 个学分 开课时间:2025 年夏季第二个 6 周课程、2024 年夏季第二个 6 周课程、2023 年夏季第二个 6 周课程 本课程广泛介绍天体物理学,重点介绍物理学在天文学中的应用方式。本课程将涵盖从恒星和行星到星系和宇宙学的小尺度和大尺度天体物理学。主题包括观测天文学、轨道力学、行星、恒星、星际介质、退化物体、银河系、星系、黑洞、类星体、暗物质、宇宙膨胀、宇宙的大尺度结构、宇宙学和大爆炸。本课程中的物理学包括力学、引力、气体动力学理论、辐射、能量传输、量子力学、磁场、狭义相对论和广义相对论。规则和要求