摘要 本研究的目的是回顾计算机场跑道尺寸和磁方向的程序,并应用于已经投入运营的机场。风向往往会根据天气情况而改变。飞机逆风起飞和降落,但由于跑道定位方向差异较大,风力较大,给机场运行带来很大困难。以位于里约热内卢的圣杜蒙特机场作为研究对象。作品还揭露了因气象原因而遭受袭击的历史。近年来的结果表明,当前的轨道方向适合现有的基础设施。但由于机场所处位置,定位的改变对未来而言是重大障碍。此外,该研究还为改进在那里发生的袭击的数据分析提供了建议。
近年来卫星发射数量的快速增长以及未来十年计划发射的压力要求提高空间领域感知设施的效率。光学设施是全球空间领域感知能力的重要组成部分,但传统光学望远镜仅限于在相对较短的黄昏时期观测卫星。在这项工作中,我们探索将这个运行时间扩大到一整天,以大幅改善单个站点的观测机会。我们使用 Huntsman 望远镜探路者(一种主要使用自备组件制造的仪器)和佳能远摄镜头探索白天的空间领域感知观测。我们报告了 81 颗 Starlink 卫星的光度光变曲线,从太阳高度 20 度到中午不等。发现 Starlink 卫星特别明亮,亮度为 3 . 6 ± 0 . 05mag,σ = 0 . 6 ± 0 . 05mag(斯隆 r'),或比黄昏条件亮 ∼ 11 倍。与理论模型进行比较后,我们得出结论,这种令人惊讶的观测亮度是由于轨道卫星下方的地球反照所致。最后,我们讨论了亨茨曼望远镜探路者使用日间光变曲线探测卫星轨道方向变化的潜力。
周期性自旋 - 轨道运动本质上是普遍存在的,从绕核的电子到旋转太阳的旋转行星。在柔软的移动机器人技术中实现自动周期性轨道运动,沿着圆形和非圆路径,对于对未知环境的适应性和智能探索至关重要,这是尚未实现的巨大挑战。在这里,我们报告了利用一个封闭的环形环拓扑,并有缺陷,以使能够实现具有定期旋转的自动软机器人 - 具有编程的圆形和重新编程的不规则形状轨迹的周期性旋转运动。通过将扭曲的液体晶体弹性丝带粘合到封闭的环环拓扑结构中,机器人表现出三个耦合的周期性自我 - 响应恒定的温度或恒定光源:内部 - 向外 - 向外翻转,自我旋转,环绕环中心,并在环外的点周围旋转。耦合的旋转和轨道运动具有相同的方向和周期。旋转或轨道方向取决于扭曲的手性,而轨道半径和周期是由扭曲的环几何形状和热驱动决定的。翻转旋转和轨道运动分别来自扭曲的环拓扑和分别打破力对称性的粘结部位缺陷。通过利用扭曲 - 编码的自主翻转 - 旋转 - 轨道运动,我们展示了机器人智能绘制未知限制空间的几何界限的潜力,包括圆形形状,包括圆形,正方形,三角形,三角形,三角形,五角形以及五角形和凹陷的范围,并与多个机器人的范围以及不幸的是,以及及其及其范围的健康范围以及及其及其及其及其及其及其及其及其及其及其及其及健康的范围。
TRMM降水雷达(PR)是第一台星载降雨雷达,也是TRMM上唯一能够直接观测降雨垂直分布的仪器。TRMM PR的频率为13.8 GHz。PR可以实现陆地和海洋的定量降雨估计。PR还可以提供降雨高度信息,这对基于辐射计的降雨率反演算法很有用。PR的覆盖范围足够小,可以研究不均匀降雨对低频微波辐射计通道相对粗糙覆盖范围的影响。PR的主要设计和性能参数如表0-2所示[Kozu等,2001]。PR的观测几何如图0-1所示。在正常观测模式下,PR 天线波束在 ±17 的横向轨道方向上扫描,结果从一端到另一端的扫描宽度为 220 公里。PR 的天线波束宽度为 0.71 ,在 ±17 的扫描角度内有 49 个观测角度箱。当 TRMM 处于 350 公里的标称高度时,水平分辨率(覆盖区大小)在天底为 4.3 公里,在扫描边缘约为 5 公里。TRMM PR 的距离分辨率为 250 米,等于天底的垂直分辨率。对于每个观测角度箱,雷达回波采样是在海面和 15 公里高度之间的距离门上进行的。对于天底入射,还收集了高达 5 公里高度的“镜像”。此外,还部分收集了表面回波(扫描角度在 ±9.94 以内)和降雨回波(扫描角度在 ±3.55 以内,高达 7.5 公里)的“过采样”回波数据。这些过采样数据将用于精确测量表面回波水平和融化层结构。根据发射前地面测试和轨道测试确定,最小可检测 Z(对应于噪声等效接收功率)从 23.3 dBZ(基于规范要求)提高到 20.8 dBZ。这主要是由于发射功率增加和接收器噪声系数降低。