近距操作是一系列轨道机动,目的是将航天器放置并保持在另一空间物体附近的相对规划路径上一段特定的时间,以完成任务目标。交会是一个过程,其中两个空间物体(人造或自然体)通过一系列轨道机动在计划的时间和地点故意靠近。总之,RPO 技术能够实现广泛的能力来支持民用和商业空间活动,例如在轨检查、维修、加油、组装和延长寿命。RPO 能力还可用于军事和情报空间活动,例如情报、监视和攻击性武器(如共轨反卫星)。自 2000 年代后期以来,中国在不同的卫星对之间进行了一系列机器人在轨演示。
近距操作是一系列轨道机动,目的是将航天器放置并保持在另一个空间物体附近,沿着相对计划的路径运行一段特定的时间,以完成任务目标。交会是一个过程,通过一系列轨道机动,两个空间物体(人造或自然体)在计划的时间和地点有意靠近。总之,RPO 技术能够实现多种功能,以支持民用和商业空间活动,例如在轨检查、维修、加油、组装和延长寿命。RPO 能力还可用于军事和情报空间活动,例如情报、监视和攻击性武器,如共轨反卫星。自 2000 年代后期以来,中国在不同的卫星对之间进行了一系列机器人在轨演示。
• 服务提供、轨道机动、姿态控制、合作目标能力; • 能够在轨道上承载和释放其他 PL/飞行器以执行联合行动(减少会合距离和复杂性); • 有可能在重返大气层前不久释放 PL/飞行器,以研究/探索重返大气层阶段和高层大气的控制; • IOD/IOV 和 TRL 提升应用,能够回收经过飞行验证的有价值资产进行检查、进一步分析和重复使用;
本文介绍了一种阻力机动装置 (DMD),它可以在许多任务中取代此类系统。DMD 由四根以飞镖配置展开的可伸缩带弹簧臂组成,可以主动调节主卫星的阻力面积以进行轨道机动和任务后处置,同时利用空气动力和重力梯度扭矩提供被动三轴姿态稳定性。集成在 DMD 中的磁力矩器可抑制姿态振荡,并有助于确保卫星以正确的面天底指向稳定。本研究概述了 DMD 设计,并详细介绍了用于表征 DMD 性能和设计控制和操作方法的姿态和轨道模拟结果。本文重点介绍了 DMD 的姿态稳定性特性。
摘要 — 可以说,我们生活的时代是新太空时代的开端。当所有主要的私营和公共太空部门都在竞相成为第一个登陆火星的人时,星际任务就变得至关重要。不仅火星,木卫二和金星也被认为是生命的家园。自主性是实现这些星际任务目标的基本部分。深度学习和计算机视觉可用于实现航天器的自主性。本文讨论了计算机视觉在太空应用中的作用以及计算机视觉在火星探索中的进展。它还总结了 NASA MER 任务中使用的立体视觉算法,这是计算机视觉在太空探索中的典范。关键词 — 航天器对接、轨道机动、立体视觉
本文探讨了视觉语言模型 (VLM) 作为操作代理在太空领域的应用,重点关注软件和硬件操作范例。基于大型语言模型 (LLM) 及其多模态扩展的进步,我们研究了 VLM 如何增强太空任务中的自主控制和决策。在软件环境中,我们在 Kerbal 太空计划差分博弈 (KSPDG) 模拟环境中使用 VLM,使代理能够解释图形用户界面的视觉屏幕截图以执行复杂的轨道机动。在硬件环境中,我们将 VLM 与配备摄像头的机器人系统集成在一起,以检查和诊断物理空间物体,例如卫星。我们的结果表明,VLM 可以有效地处理视觉和文本数据以生成适合上下文的操作,在模拟任务中与传统方法和非多模态 LLM 竞争,并在实际应用中显示出良好的前景。
11. 发射的卫星数量不断增加,产生了更多的数据和服务,但也产生了更多的碎片。每发射一颗卫星,就会在太空中产生 10 到 100 倍以上的物体,这还不包括与发射有关的次级物体。有人强调,空间利用的临界点已经超过,即使停止所有空间活动,轨道上的物体数量也已经达到了可以维持的容量,尽管活动停止,碎片数量仍将继续增加。有人表示,最大的挑战在于,一旦卫星进入太空,它并不总是能回来,人类发射的第一批物体仍然在太空中,这导致运营商已经达到临界点,会合警告或碰撞是周期性的。考虑到这一挑战,下一步将涉及轨道机动,这是每周或每月进行的正常和频繁的行动。
在过去的几十年中,通过许多技术里程碑的进步,在轨服务 (OOS) 领域已经发展成为一个可行的行业。从 1965 年双子座 6 号首次轨道交会到 2020 年诺斯罗普·格鲁曼公司的任务扩展飞行器成功重新定位国际通信卫星组织 901,科学和工程成就使一项有前途的太空新能力成为可能。这种 OOS 能力可以实现更高的灵活性、降低风险和新的扩展系统架构。最近,航天工业正在迅速部署大量卫星,这些卫星的数量级是前所未有的。本文将回顾使能技术、即将推出的 OOS 计划、新兴的扩散星座和轨道环境条件,这些条件使潜在的未来 LEO 客户能够使用 OOS。这些环境条件包括 LEO 轨道敏感性、轨道机动、J2 地球扁率和推进考虑因素。
美国国防部 (DOD) 的目标是加强对太空敌对行为的探测与归因,保护联合部队免受敌对行动的侵害,并通过更具弹性的太空架构确保对现代战争至关重要的太空任务的执行。国防部已经确定美国太空架构需要从过度依赖单一、高度专业化和复杂的卫星转向“弹性设计”架构。太空弹性可以通过欺骗、分解、分发、多样化、扩散和保护的组合来实现,并应通过模拟、建模和战争游戏进行校准。可以通过电磁频谱操作、轨道机动以及核和网络强化来增强对太空威胁的防护。通过空间域感知能力可以快速准确地检测和跟踪太空物体。 2022 年,国防部探测并跟踪了约 47,900 个太空物体,包括 7,100 个活跃有效载荷以及非活跃有效载荷、废弃火箭助推器和太空垃圾。Stephen J. Flanagan、Nicholas Martin、Alexis A. Blanc 和 Nathan Beauchamp-Mustafaga,《太空行动威慑框架》,兰德公司 (2023 年 8 月)。https://www.rand.org/pubs/research_reports/RRA820-1.html。