2022—2024年,中国空间科学计划、深空探测计划和载人航天计划进展迅速。中国科学院2011年启动实施的空间科学战略性先导计划两期均取得了丰硕的科学成果,其中一期包括暗物质粒子探测器(DAMPE)、实践十号(SJ-10)、空间量子实验(QUESS)和硬X射线调制望远镜(HXMT),二期包括太极一号(太极计划首次技术演示任务)、引力波高能电磁对应体全天空监测器(GECAM)、先进空间太阳天文台(ASO-S)、爱因斯坦探测器(EP)、太阳风磁层电离层链接探测器(SMILE)。中国首个综合性太阳探测任务——先进空间太阳天文台(ASO-S)和致力于软X射线时域天文学探测的爱因斯坦探测器(EP)分别于2022年10月9日和2024年1月9日发射。中国与欧空局的联合任务——太阳风磁层电离层链接探测器(SMILE)计划于2025年底发射。全球首颗助力联合国2030年可持续发展议程的科学卫星——SDGSAT-1已运行两年半,为推动国际可持续发展目标实施提供了宝贵数据。主要研究伽马暴的中法联合任务天基多波段可变目标监测器(SVOM)于2024年6月22日发射,轨道高度约635公里。未来还将围绕极端宇宙、时空涟漪、日地全景、宜居行星、太空生物和物理科学五大科学主题开展新的科学任务。在月球与深空探测方面,嫦娥六号探月任务于2024年6月25日重返大气层并成功着陆地球,完成从月球背面采集首批样本的历史性使命。在载人航天领域,中国空间站已于2022年底全面部署,进入应用发展阶段。开展了空间生命科学与生物技术、空间材料与器件、空间材料与器件、空间材料与器件等多个领域的科研项目。
濒临灭绝,甚至在未来几年未引入有效解决方案时,可能会因某些高度而被拒绝。尤其是大于1 cm的碰撞碎片将成为碎屑种群中的主要部分。因此,为了确保未来太空飞行的安全性,卫星和上阶段的有效寿命消失变得不可避免(ESA [1]和ESA [2])。然而,将来可能必须在25年的时间内确保轨道上的轨道,以保留允许空间飞行的轨道环境。当前的考虑假定需要少于5年的目标。用于在狮子座(例如卫星或火箭物体)中取消对象的渗透,适用了几种概念。最明显,最经济的一种是被动去驱动,这意味着让物体的轨道轨道衰减(EOM)自然衰减(EOM),直到重新进入,这限制了轨道高度以使任务遵守合理的放电时间。一种替代方法是一种主动的去除措施。目前,许多航天器使用活动推进器系统进行受控的重新进入,这增加了不需要的显着额外质量,有时甚至是复杂性,因为额外的推进剂以及需要指导,导航和控制(GNC)系统,以确保在Deorbit Maneuver过程中以所需的方向在所需的方向上行动。额外的质量和复杂性不能执行航天器的初始任务。如果出现故障,将不会在规定的时间内进行解开。[3])。主动推进器脱轨系统的最大缺点是其寿命终止(EOL)推进系统和GNC在EOM之后仍需要运行到轨道上约10 - 15年。缓解的有希望的未来设计目标可能是使用被动和独立的工作系统,以确保即使卫星出乎意料地出现故障,仍然可以执行可靠的轨道。此外,可以将被动解决方案构成,以便比相关的额外卫星控制系统要比额外的推进剂且复杂的质量较轻。同样,如果某个任务要求使用一个主动系统,则可以考虑使用被动系统的冗余,以便完全确保将来的空间任务的野心避免或加速进入大气。阻力增强设备(也称为“拖航”)正在使用Leos中存在的残留地球气氛(Vincent等人。为了启用De-Orbit操纵,部署了一个大表面
“NTU 在人工智能、数据科学和各个工程领域的深厚专业知识使我们的教师能够攻克地球的最后边界——太空。自 OSTin 成立以来的这些年里,我们在太空领域积累了广泛的技术专业知识,从上游研究到下游运营,”何教授表示。“ELITE 是 NTU 的最新卫星,融合了新加坡公司的最优秀创新技术。它展示了先进的卫星技术如何以更可持续和更具成本效益的方式造福人类。展望未来,我们的目标是帮助共同开发本地太空社区的“数据湖”,促进合作并共享宝贵信息,这将有助于新加坡太空产业发挥其最大潜力。” OSTIn 执行董事 Jonathan Hung 先生表示:“通过支持 NTU 领导的 ELITE 项目,OSTIn 能够促进新加坡太空生态系统中各个太空参与者之间的合作。ELITE 展示了我们的生态系统在提升新加坡太空技术能力方面所取得的进步。该项目还为我们的学生和年轻人提供了参与机会,进一步激发了他们对科学、技术、工程和数学 (STEM) 作为职业选择的热情。” ELITE 项目还吸引了 20 多名 NTU 学生的参与,他们是越来越多积极参与与空间技术相关的 STEM 工作的新加坡年轻人之一。这些来自中学、初级学院、理工学院和大学的学生有机会以多学科的方式进行实验和创新,培养他们对科学和工程的热情。 ELITE 卫星是新加坡南洋理工大学、Aliena、LightHaus Photonics、新加坡国立大学淡马锡实验室和 ST 工程卫星系统系统合作的成果,通过创新研究和战略伙伴关系展示新加坡在空间技术方面的优势。 来自新加坡的新型卫星创新 ELITE 卫星重 180 公斤,尺寸为 129 厘米 x 70 厘米 x 73 厘米,相当于一个小冰箱的大小。它的设计运行高度为 VLEO,距离地球表面约 250 公里,远低于大多数小型卫星的常规高度 550 公里或更高。VLEO 是一个相对未开发的太空区域,在 VLEO 中运行会带来重大挑战,例如地球大气层的痕迹造成的空气阻力。这种阻力会降低卫星的轨道高度,最终导致其在大气层中燃烧殆尽。这种现象还有助于防止报废卫星成为太空垃圾。
许多跨学科科学研究都需要对野火进行遥感,包括野火对生态的影响。几十年来,这项研究一直受到空间分辨率不足和探测器在短波和中波红外波长处饱和的阻碍,而高温 (>800 K) 表面的光谱辐射最为显著。为了解决这个问题,我们正在开发一种紧凑型高动态范围 (HDR) 多光谱成像仪。紧凑型火灾红外辐射光谱跟踪器 (c-FIRST) 利用数字焦平面阵列 (DFPA)。DFPA 由最先进的高工作温度屏障红外探测器 (HOT-BIRD) 和数字读出集成电路 (D-ROIC) 混合而成,具有像素内数字计数器以防止电流饱和,从而提供动态范围 (>100 dB)。因此,DFPA 将能够对温度变化范围从 300 K 到 >1600 K(燃烧的火灾)的目标进行非饱和高分辨率成像和定量检索。凭借从 500 公里的标称轨道高度解析地球表面 50 米级热特征的分辨率,一次观测即可捕获野火的全部温度和面积以及冷背景,从而增加每个返回字节的科学内容。使用非饱和 FPA 是一种新颖的做法,它克服了以前高辐射值使 FPA 像素饱和(从而降低了科学内容)的问题,并展示了遥感方面的突破性能力。因此,c-FIRST 适用于量化野火排放,这对于确定其对全球生态系统的影响至关重要。 c-FIRST 的 FPA 采用 InAs/InAsSb HOT-BIRD 外延材料制作,像素间距为 20 m,探测器阵列为 1280x480 格式,并与模拟 DROIC 混合。DFPA 的 50% 截止点为 ~4.5um,在 140K 工作温度下,整个 QE 光谱范围内测得的外部 QE~50%。我们将积分时间固定在 6 毫秒,以便在以 150 Hz 帧速率观察正常 300K 背景场景时在 MWIR 波段获得良好的灵敏度。对于标准模拟 ROIC,探测器像素在目标温度 ~700 K 时很容易饱和。当 D-ROIC 在 16 位模式下运行时,我们可以将饱和温度显著提高到 ~1100 K。当 D-ROIC 在超 HDR 32 位模式下(28 万亿电子阱深度)运行时,即使对于 1600 K 目标,探测器也不会接近饱和。火灾遥感的一个关键指标是可探测的最小目标尺寸。c-FIRST 可将可探测火灾的最小尺寸提高一个数量级,这主要是由于非饱和探测器的空间分辨率比 GOES 上的高级基线成像仪等当前维修仪器更高,同时功率、尺寸和重量也更低。c-FIRST 空中飞行计划于 2024 年火灾季节进行仪器测试和验证。我们预计 c-FIRST 太空验证将基于 2026 年或之后的空间技术验证机会。