棉花是世界主要的纤维作物,面临着众多生物和非生物胁迫。棉花的基因转化对于满足世界粮食、饲料和纤维需求至关重要。通过随机转移基因进行的基因操作产生了可变的基因表达。通过最新的基因组编辑工具进行有针对性的基因插入会导致基因在特定位置可预测的表达。基因堆叠技术是一种适应性策略,它通过同时在特定位点整合 2-3 个基因来避免在不同位置产生可变的基因表达,从而对抗生物和非生物胁迫。这项研究解释了棉花创始转化子的开发,以用作多基因堆叠项目的基线。我们引入了 Cre 和 PhiC31 介导的重组位点来指定传入基因的位点。整合了 CRISPR-Cas9 基因以开发基于 CRISPR 的棉花创始系。Cas9 基因与 gRNA 一起整合以靶向棉花卷叶病毒的 Rep(复制)区域。病毒的复制区域被专门针对以减少进一步的增殖并防止病毒发展出新的菌株。为了成功开发这些原代转化体,已经使用红色可视化(DS-Red)优化了模型转化系统。根据红色转化系统,已经开发了具有重组指定位点(Rec)、目标复制区域(Rep)和Cas9创始系的三个基线。这些创始转化体可用于开发重组酶介导和基于CRISPR/Cas9的棉花起源系。此外,这些转化体将为所有重组酶介导的基因堆叠项目建立一个基础系统。
Lazar教授的研究重点是对酵母代谢和调节的全面探索,特别是在Yarrowia进化枝和Vishniaiacozyma属的物种中。 他在代谢工程和合成生物学方面的工作涉及开发能够有效生物合成的酵母转化体,以使有价值的代谢产物,例如有机酸,多羟基醇,染料,香料,香料和异源蛋白质。 此外,他致力于通过将工业废物作为生物合成的底物价值来促进可持续的生物技术。 他的创新方法扩展到利用微生物进行矿物质提取和加工,以及采用生物修复技术去除环境污染物。 这项多方面的研究对当代生物技术的进步产生了重大贡献。Lazar教授的研究重点是对酵母代谢和调节的全面探索,特别是在Yarrowia进化枝和Vishniaiacozyma属的物种中。他在代谢工程和合成生物学方面的工作涉及开发能够有效生物合成的酵母转化体,以使有价值的代谢产物,例如有机酸,多羟基醇,染料,香料,香料和异源蛋白质。此外,他致力于通过将工业废物作为生物合成的底物价值来促进可持续的生物技术。他的创新方法扩展到利用微生物进行矿物质提取和加工,以及采用生物修复技术去除环境污染物。这项多方面的研究对当代生物技术的进步产生了重大贡献。
加拿大卫生部的提案还包括对监管指导的其他“更新”,这些提案将明确规定对与之前评估的转基因生物“相同”的转基因生物实行不同“层级”的监管。加拿大卫生部将这些转基因生物称为“再转化体”,并提议采用一种快速通道审查形式,要求产品开发商提供的信息更少。CBAN 不同意将此类植物描述为“相同”,并认为每个基因工程“事件”,即使是使用相同方法创造相同特性的事件,也可能导致新的和意想不到的影响。最初,这些提案将特别适用于对更多抗除草剂作物的快速通道审批,因为这些作物是迄今为止批准的转基因生物中的大多数。
植物组织培养技术,微繁殖,细胞,组织Andorgan培养,诱导和继发代谢产物的产生。基因工程中的酶,克隆载体,农杆菌介导的基因转移,转化体的表征,基因库,DNA测序,基因组学和蛋白质组学介绍,PCR和RTPCR技术。2。Bioinformatics Databases : Primary sequence databases (GenBank-NCBI, the nucleotide sequence database-EMBL, DNA sequence databank of Japan- DDBJ; Protein sequence and structure databases (PDB, SWISS-PROT and TrEMBL); Derived (Secondary) Databases of Sequences and Structure: Prosite, PRODOM, PRINTS, Pfam, BLOCK, SSOP, and CATH.酶数据库,生物多样性数据库。
简介:紫皮蛋白是一种由各种细菌产生的双座,众所周知,可以显示出广泛的药物特性。不幸的是,天然紫饼蛋白生产商的生产力低,导致了不一致的紫cile蛋白供应,从而限制了其作为未来治疗剂的应用。异源表达系统,例如大肠杆菌和Pichia Pastoris,提供了一种产生这些高价值的次级代谢物的替代方法。这项工作描述了大肠杆菌中紫质蛋白异源生产的遗传体系的发展。方法:紫c。violaceum,mth01的生产者是从马来西亚马来西亚大学的林理学基础上分离出来的。使用基因特异性底漆,整个7.3 Kb紫out基因簇从C. volaceum mth01 DNA成功扩增,克隆到PUC19矢量(PVIO19)中,然后分别为PET-3A和PET-3A和PET-11B,分为PVIO3A和PVIO3A和PVIO11B,分别为PET-3A和PET-11B。为异源表达,优化了碳源,温度,诱导剂(IPTG)和L-色氨酸的参数。使用TLC和FTIR分析了从紫色的大肠杆菌转化体中提取的violacein。结果:几天后,含有PVIO3A或PVIO11B的大肠杆菌转化体开发了紫色菌落,表明紫co菌菌素在大肠杆菌中成功表达。TLC分析显示,RF值可与脱氧维奥莱辛(紫氧化紫葡萄丝(Deoxyviolacein)(一种中介代谢物)中的脱氧葡萄蛋白相媲美,而FTIR光谱揭示了胺和羰基的存在,这两个都是吲哚的特征。结论:此处描述的大肠杆菌异源系统可以利用葡萄糖或甘油作为碳源。将L-色氨酸添加到生长培养基中对于成功表达紫col途径是必要的。
图2。吉布森组装反应效率和准确性对反应时间的依赖性。(a)与吉布森组装反应混合物转化的大肠杆菌菌落形成的比较。数据代表具有标准偏差的平均CFU计数(n = 9)。(b)RCA反应使用吉布森组装克隆产物作为模板产生。使用Quant-IT PICOGREEN DSDNA测定试剂盒对反应产量进行定量。数据表示标准偏差(n = 3)的平均值。(c)使用插入片段侧面的载体特异性引物对大肠杆菌转化体进行群落PCR筛选。用SYBR安全染料将等量的PCR产物加载在1%的E-E-Gel琼脂糖凝胶上。m:e-gel 1 kb Plus Express DNA梯子用作分子大小标准,NC:由无插入的矢量组成的负对照,NTC:非板块对照。
V.实践•良好的实验室实践,缓冲液和试剂的准备。•离心和分光光度计原理。•细菌培养的生长和生长曲线的制备,从细菌中分离基因组DNA。•从细菌中分离质粒DNA。•lambda噬菌体的生长和噬菌体DNA的分离。•植物DNA的隔离和限制(例如大米 /月光 /芒果 / Merigold)。•通过(a)琼脂糖凝胶电泳和(b)分光光度法•使用分离的DNA定量DNA。•pagegel电泳。•质粒和噬菌体DNA,结扎,重组DNA构建的限制消化。•大肠杆菌的转化和转化体的选择•色谱技术a。 TLC b。凝胶过滤色谱法,c。离子交换色谱法,d。亲和色谱•点印迹分析,南部杂交,北部杂交。•Western印迹和Elisa。•辐射安全性和非拉迪奥同位素程序。
黑色微菌落真菌(来自 Arthonio-、Dothideo- 和 Eurotiomycetes 的子囊菌)是自然和人为极端栖息地中耐压力和持久的栖息者。它们表现出缓慢的酵母样或分生生长,不形成专门的生殖结构,并在多层细胞壁中积累黑色素 1,8-二羟基萘 (DHN) 黑色素。要了解黑色真菌如何生活、存活、在矿物基质上定殖以及与光养菌相互作用,需要使用遗传方法来测试这些功能和相互作用。我们选择了 Chaetothyriales 的岩石栖息菌 Knufia petricola 作为开发遗传操作方法的模型。在这里,我们报告了通过更高效的多重 CRISPR/Cas9 扩展遗传工具包的情况,使用基于质粒的系统表达 Cas9 和多个 sgRNA,并实施三个抗性选择标记 genR(遗传霉素/ nptII)、baR(草铵膦/ bar)和 suR(氯嘧磺隆/ sur)。通过替换色素合成必需基因有针对性地整合表达构建体,可以对转化体进行额外的颜色筛选。由于消除了 pks1(黑色素),黑粉色筛选被用于启动子研究,使用 GFP 荧光作为报告基因。由于同时消除了 pks1 和 phs1(类胡萝卜素),黑白筛选可以识别包含两个表达构建体的转化体,以进行共定位或双分子荧光互补 (BiFC) 研究。证实了两种 K. petricola White Collar 直系同源物的共定位和相互作用。确定了两个基因间区域 ( igr1 、 igr2 ),其中可以插入表达构建体而不会引起明显的表型。使用 pNXR-XXX 系列质粒和新的兼容入门质粒可以快速轻松地生成表达构建体,适合在其他真菌中广泛实施。这种遗传工具的多样性为黑真菌基因组编码的基因/蛋白质的表达、功能和调控的机制和非常详细的研究开辟了一个全新的视角。
摘要:Lichtheimia corymbifera 被认为是最常见的毛霉菌之一。由于缺乏有效的基因操作工具,我们无法表征这种机会性致病真菌的致病机制和毒力因子。尽管此类技术已用于某些物种,但在毛霉目真菌中,进行定向诱变和构建稳定转化体仍然是一个巨大的挑战。在本研究中,应用无质粒 CRISPR-Cas9 系统对 L. corymbifera 进行定向基因破坏。所述方法基于 Cas9 酶引起的双链断裂的非同源末端连接修复。利用该方法,可以在乳清苷 5′-磷酸脱羧酶基因 (pyrG) 中诱导一到五个核苷酸长的短靶向缺失,从而构建尿嘧啶营养缺陷型菌株。这些菌株可作为未来基因操作研究中的受体菌株。据我们所知,这是这种临床相关真菌的首次基因改造。