摘要。本文介绍了微生物制剂对根际生物学活性的影响和冬季小黑麦的生产力。根据使用微生物制剂,米佐蛋白,rzhf品牌的根瘤菌和FZHF品牌的微生物制剂的背景,研究了冬季小麦根际生物学活性的微生物和生化指标。数据揭示了有关使用农业的氮微生物和放线菌的数量的增加,关于微米菌的生长,放线菌的生长,用米佐蛋白治疗时,用氨基化的微型机器人来处理rhiiz的数量时,将rhiiz的数量与rhizh进行了rhizh时,将纤维素降解的微生物进行了处理。提供了有关微生物制剂对冬季小卵石酶酶库的有益作用的数据。当使用药物根瘤菌品牌RZHF,转化酶和过酶时,当用药物根瘤菌品牌FZHF,多酚氧化酶和过氧化物酶处理时,注意到磷酸酶和过氧化物酶的高活性。结论是关于尿素酶活性的减少以及实验所有变体的生产力元素指标的增加。
摘要:过去几十年心血管预防研究的特点是成功开发出从实验室到临床的治疗低密度脂蛋白 (LDL) 高胆固醇血症的方法。最近的例子包括用单克隆抗体、小干扰 RNA 和反义 RNA 药物抑制前蛋白转化酶枯草溶菌素/kexin 9 型 (PCSK9)。LDL 胆固醇对动脉粥样硬化的累积效应使得早期、有效和长期降低 LDL 胆固醇成为可取之道——理想情况下不需要定期服用或使用药物,而且重要的是没有副作用。目前的报告显示,灵长类动物在用 PCSK9 基因或碱基编辑器进行一次治疗后,LDL 胆固醇就会持久降低。使用 CRISPR/Cas 系统可以精确编辑基因组,直至单核苷酸变化。只要保证安全性并记录心血管事件的减少,这项新技术就有可能从根本上改变我们目前的心血管预防观念。本综述阐述了 CRISPR/Cas 系统的应用,并介绍了 PCSK9 编辑体内方法的现状。
抽象的扩张心肌病(CMD)是一种心脏病,其特征是心脏扩张和收缩功能降低,这会导致心力衰竭和猝死。CMD病理生理学涉及心室重塑过程,导致心脏肌肉的扩张和减弱。多个因素,例如氧化应激,炎症,线粒体功能障碍和细胞骨架的变化,会导致这种心室重塑。至于流行病学,这是一种罕见的疾病,主要影响生命的第三和第四个十年。在儿童中,最高的发病率在不到12个月的时间内发生,每10万儿童的患病率为0.57,在男孩中更为常见。该疾病的患病率在不同的国家和人群中有所不同,对CMD的发展具有遗传倾向。CMD诊断涉及临床评估,实验室测试,心电图,超声心动图和心脏磁共振成像。治疗方法旨在控制症状,改善心脏功能并降低猝死的风险。治疗管理包括使用诸如血管紧张素转化酶抑制剂,β-释放剂和利尿剂等药物,以及非药物限制等非药物干预措施,Control
家族性高胆固醇血症是一种常染色体主导的疾病,其特征在于utero内寿命以来为异常高的低密度脂蛋白浓度。它是由低密度脂蛋白受体(在80%的病例中),载脂蛋白B和前蛋白转化蛋白转化酶枯草蛋白/Kexin 9型(PCSK9)基因引起的。家族性高胆固醇血症影响全球约3000万受试者[1]。存在两种形式:纯合形式(HOFH)的特征是具有两个突变的等位基因和het-杂合形式(HEFH),它通过具有一个突变的等位基因。HOFH的患病率约为一百万分之1,并且预后比HEFH差得多,HEFH的患病率为300分之1 [2]。尽早检测和治疗家族性高胆固醇血症对于防止心脏动脉粥样硬化疾病(尤其是冠状动脉疾病)的发展至关重要。疗法包括饮食改良,药物(汀类药物,ezetim- Ibe,PCSK9抑制剂)和脂质的长止语化。除了冠状动脉疾病外,在患有家族性高胆固醇血症的人中,主动脉瓣狭窄也更为普遍。
Iptacopan 是一种在研的、同类首创的替代补体途径 (AP) 的 B 因子 (FB) 抑制剂。Iptacopan 与 FB 结合并阻止 AP C3 转化酶 (C3bBb) 的形成。这限制了 C3 裂解为活性片段 C3b。Iptacopan 每天口服两次,每次 200 毫克。Iptacopan 是补体驱动性肾病 (CDRD) 的主要驱动因素之一,它有可能成为首个延缓 C3 肾小球病 (C3G) 进展到透析的靶向疗法。Iptacopan 目前正在针对几种存在重大未满足需求的 CDRD 进行开发,包括 C3G、IgA 肾病 (IgAN)、非典型溶血性尿毒症综合征 (aHUS) 和特发性膜性肾病 (iMN),以及血液疾病阵发性睡眠性血红蛋白尿 (PNH)。 1 II 期试验结果表明,iptacopan 有可能为 C3G 患者提供首个靶向治疗。基于这些积极结果,iptacopan 已获得欧洲药品管理局 (EMA) 授予的 C3G PRIME 资格以及美国食品药品管理局 (FDA) 和 EMA 授予的孤儿药资格
摘要:新颖的SARS-COV2逐渐大流行的速度遍布全球。需要迫切需要治疗。最初,该病毒首先出现在中国武汉,后来在全球187个国家中出现。冠状病毒是人类呼吸道和神经系统疾病的原因。新型引起人畜共患病的冠状病毒是单链的RNA病毒。冠状病毒的外部结构由由糖蛋白组成的峰值蛋白组成,糖蛋白与人类感染时与ACE(血管紧张素转化酶)蛋白结合。在当前的研究中,使用生物信息学工具观察到了生物领域中已经使用的37种化合物。通过分子对接将重新利用的药物对接针对尖峰受体。从蛋白质数据库中检索配体结构和受体结构。补丁码头服务器是可用于对接过程的开放免费软件。结果包括加速和匹配特性的得分,显示了针对SARS-NCOV使用药物的可行性。用于可视化最终停靠产品,Pymol和Raswin软件。针对受体的每个配体的得分显示出针对COVID-19疾病的兼容性。
sars-cov-2一直在世界各地传播,经常发展为具有更大人类感染能力的新变体。SARS-COV-2及其突变体使用血管紧张素转化酶2(ACE2)作为细胞进入受体,该酶触发了几种依靠ACE2重组蛋白作为诱饵受体的使用的covid-19的治疗策略。在这项工作中,我们将ACE2无声FC融合蛋白(ACE2-HFCLALA)作为针对COVID-19的候选疗法。通过ELISA和流式细胞仪抑制测定法测量,该融合蛋白能够阻止SARS-COV-2 RBD与ACE2受体的结合。此外,我们使用了经典的中和测定法和后代中和测定法,以表明ACE2-HFCLALA融合蛋白能够中和正宗病毒。此外,我们发现与D614G菌株相比,这种融合蛋白在具有不同感兴趣的变量(Alpha,Beta,Delta和Omicron)方面更有效地预防体外感染(Alpha,Beta,Delta和Omicron)。我们的结果表明,该分子在治疗和预防性环境中使用使用ACE2作为通往人类细胞的门户的治疗和预防设置的潜力。
高血压是一个沉默的杀手,印尼人口的患病率为34.11%,女性为36.85%,男性为31.34%。1高血压会导致肾脏损伤,心脏,中风,即使无法正确治疗。非药物治疗用于高血压是通过改变更健康的生活方式,避免低盐饮食的压力并从小就定期运动来完成高血压。高血压的药理治疗包括一类利尿药,血管紧张素转化酶(ACE抑制剂),血管紧张素受体阻滞剂(ARBS),β受体阻滞剂,钙通道阻滞剂(CCBS)和肾素抑制剂。肾素血管紧张素 - 醛固酮系统(RAAS)在高血压发展中具有重要作用。对SRAA作用的两种药物是ACEI和ARB。2都在抑制RAA和副作用方面都有缺点。肾素是RAA的重要组成部分,具有血管紧张素原的特异性。肾素抑制剂可以在最高水平上阻止SRAA。印度尼西亚以动植物的形式拥有多种自然财富。3然而,仍然有许多植物被科学地使用或测试。肾素抑制剂源自天然成分通常来自皂苷化合物或多酚化合物的类别。4
摘要J.R. Simplot Company(Simpleot)已就BG25马铃薯衍生的食品进行了咨询(FDA)的咨询。BG25马铃薯经过基因设计,以表达对植物疫霉菌(RPI)蛋白质蛋白AMR3,BLB2和VNT1的抗性,以抗击马铃薯晚期疫病疾病,以及对乙酰蛋白质的抗性,这使乙酰蛋白耐受性耐乙酸盐合成酶(Als) - 抑制了 - 抑制的雄性固醇。stmals用作可选标记。BG25马铃薯还经过基因设计,以抑制马铃薯病毒Y外套蛋白(PVY-CP)的表达,并使用RNA干扰(RNAI)诱导PVY抗性。最后,BG25马铃薯被设计为抑制液泡转化酶(VINV)和多酚氧化酶(PPO)的表达,以分别使用RNAi,分别称为“黑点”,从而降低了还原糖的较低水平,并降低了酶褐变。本文档总结了FDA食品安全与应用营养中心(CFSAN,WE)评估与BG25马铃薯的人类食品用途有关的结论和支持数据和信息。FDA的兽医中心总结了其与动物食品用途有关的评估。
该病毒使用存在于其表面上的尖峰蛋白来识别其细胞表面接收器,即血管紧张素2(ECA 2)的转化酶,进入宿主细胞细胞质和复制(Chugh等,2021年)。该病毒探索了宿主的细胞机制以获取细胞的访问:其尖峰蛋白被连接ECA2后立即从宿主细胞表面的跨膜蛋白酶2(TMPRS2)丝氨酸切割,然后在叶片裂解位点进行蛋白水解活化。该病毒主要到达呼吸道的上皮,该呼吸道被强烈调节的气道表面的一层液体覆盖,该液体是针对呼吸道病原体的主要防御机制。该流体层的体积和粘度受呼吸上皮中不同运输道路的协调功能调节和维持。研究人员认为,SARS-COV-2可以显着改变接收器信号通路与GPCR(GPCR)耦合,从而改变了阴离子分泌和吸收钠的微妙平衡,从而控制了该流体层的稳态,从而减少了离子和肺部液体的运输。因此,病理生理级联反应开始,导致肺水肿,肺水肿是COVID -19的最严重和可能致命的临床表现之一(Hameid等,2021)。