理查德·a·比辛格是新加坡拉惹勒南国际关系学院军事转型项目客座高级研究员。他的工作重点是亚太地区的安全和防务问题,包括军事现代化和部队转型、地区国防工业和地方军备生产以及武器扩散。比辛格先生撰写过多部专著和书籍章节,他的文章发表在《国际安全》、《Orbis》、《中国季刊》和《生存》等期刊上。他是《武装亚洲:技术民族主义及其对地方国防工业的影响》(2017 年)一书的作者,也是《亚太新兴关键技术与安全》(2016 年)一书的编辑。他的联系方式:。
新的计算工具,具有伪单细胞分辨率组织学(Spotiphy)的现场成像仪,采用机器学习算法来显着改善常规的空间转录组技术。这些技术着眼于捕获基因表达的网格上的预定义的“斑点”。这些本质上是在整个组织段中形成最终基因表达图像的像素。每个位置通常包含多个,通常是异质的细胞,使它们难以分类和分析单个细胞。
结果通过创新的生物技术将采矿业与农业联系起来,称为“生态生物世界”。这项技术以生态方式将废弃的采矿资源(来自开阔矿山的沙子,铸造砂砂)转化为生物螺旋体,以支持恢复土壤化学和特征,并刺激植物的生长和健康。在静态和渗透条件下测试了有机污染的使用的铸造砂的生态生物颗粒过程,以消除危险的有机化合物。根据对治疗八周后所有方法的分析,最终最有效的方法是模仿渗透条件下“堆异构生物渗入”的方法,其中将污染的污染降低到4.3 mg/l doc。基于乳酸杆菌和芽孢杆菌形式的天然微生物财团的活性,对样品的生态生物渗入,可将其用作生物兴奋剂/生物肥料的浸润物产生渗滤液。这种新一代的生物兴奋剂/生物肥料包含有益的细菌,有机酸以及来自非金属原料和废物的溶解的微元素和宏观元素。砂样品的量会影响有机酸的浓度,从而影响生物含量后的元素。开采的低级沙子和使用的原材料(例如铸造砂)代表了生物技术过程的输入材料,并最终再次成为土壤(地球)的一部分,从而对循环结束了对当地采矿业,循环和农业的积极影响。
摘要:该研究旨在强调向数字经济的过渡可以在实现经济多样化的目标中发挥的作用,这是鉴于大多数政策和策略所实现的灾难性失败,以实现这一目标,这是为了实现这一目标的最重要的现代策略,该方法是实现这一范围的最重要的策略之一。 学习。该研究得出的结论是,向数字经济的过渡以及技术,数字化和知识的使用,在实现经济多样化的目标以及提高旨在多样化出口部门和收入来源的经济领域的能力方面具有很大的效率。关键字:数字经济,数字化,信息和通信技术,经济多样性。JEL分类代码:A1,O14,O33
自然语言模型的出现(MLN),例如DeepSeek,Gemini,Chat GPT彻底改变了包括法律部门在内的几个领域。但是,这些工具的日益增长带来了一个重大挑战:幻觉。ima幻觉是指AI模型的产生不正确,发明或误导性信息,令人信服地呈现出事实。这种现象是MLN的功能固有的,需要对其原因,特征和含义进行深度分析,尤其是在信息准确性至关重要的情况下。这种对审查的需求在考虑到AI本质上是近似和概率的系统,远非诸如法律等领域的绝对确定性和真理(Marcus&Davis,202222)。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经Peer Review的认证)提供的,他已授予Biorxiv的许可证,以在2023年12月20日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2023.12.12.18.572273 doi:biorxiv Preprint
概要:生命活动,例如呼吸,是通过细胞、组织和器官的持续形状调节来完成的。开发具有形状变形能力的智能材料是迈向类生命系统和可穿戴电子设备、软体机器人和仿生执行器等新兴技术的关键一步。从细胞中汲取灵感,人们组装了智能囊泡系统来模拟生物形状的调节。这将有助于理解细胞形状的适应性,并指导具有形状变形能力的智能材料的设计。由两亲性分子组装的聚合物囊泡就是一个卓越的囊泡系统的例子。其化学多功能性、物理稳定性和表面功能性使其有望应用于纳米医学、纳米反应器和仿生系统。然而,由于聚合物链的低流动性和囊泡膜的低渗透性导致能量分布不均匀,因此很难驱动聚合物囊泡脱离平衡态来诱导形状转变。过去几十年来,大量的研究开发了各种驱动形状转变的方法,包括透析、化学添加、温度变化、聚合、气体交换等。如今,聚合物囊泡可以被设计成各种非球形形状。尽管取得了令人瞩目的进展,但目前关于聚合物囊泡形状转变的研究大多仍处于反复试验阶段。预测和编程控制聚合物囊泡的形状转变是一项巨大的挑战。深入了解聚合物囊泡的变形路径将有助于从反复试验阶段过渡到计算阶段。本文介绍了聚合物囊泡形状转变的最新进展。为了进行深入分析,我们将聚合物囊泡的形状转变分为基本变形和耦合变形。首先,我们讨论聚合物囊泡的基本变形,重点关注两种变形路径:扁圆形路径和扁长圆形路径。并介绍了触发不同变形路径的策略。其次,我们探讨了两种变形途径选择性的起源以及控制这种选择性的策略。第三,我们探讨了聚合物囊泡的耦合变形,重点关注两种基本变形途径的切换和耦合。最后,我们分析了聚合物囊泡形状转变的挑战与机遇。我们设想,对变形途径的系统理解将推动聚合物囊泡形状转变从反复试验阶段进入计算阶段。这将使我们能够预测纳米颗粒在血液和间质组织等复杂环境中的变形行为,并最终获得人造应用所需的先进结构。
2024年12月11日,美洲研究所(IOA)和巴西国际关系中心(CEBRI)共同主持了有关南美地区能源整合的高级讨论。在整天的整整一整天,专家们都研究了当前的前景和领域,以增强合作和半球能源外交。长期以来,区域融合的潜在好处已经很明显,但该活动的讨论反映了一种感觉,即南美已经到达了一个转折点 - 一种指导的努力可以释放许多人长期以来一直在努力。该地区现在可能有望超越多年不均匀的结果。顶级政府,私营部门和多边发展银行(MDB)小组成员一致认为,大规模的非卫生可再生能源和蓬勃发展的天然气生产的游行提供了该地区可以并且应该交换的重要能源和经济安全投入。现在,这种互动比以往任何时候都更加重要,因为不可预测的气候事件Pummel地区经济和能源部门。增强了区域整合以及基础设施和技术的利用率增加,这对于更强大,更有弹性的能源领域是必不可少的。和区域融合不仅可以推动规模经济,而且可以推动脱碳和竞争力提高,从而将南美定位为上升的清洁能源市场和供应商。能源应视为可腐烂的可交易商品,尤其是在可再生能源的情况下。必须以相同的视角考虑天然气。因此,跨境存储解决方案可以为区域能源交流带来完全不同的观点和机会。会议探讨了在南美实现能源整合的重要性,复杂性和挑战。它考虑了该目标的实用和有远见的方面,探索了经济,环境和地缘政治
Masa Tsuchiya 1 *,Kenichi Yoshikawa 2和Alessandro Giuliani 3 1 1 Seiko Life Science Libe Science Laboratory,日本大阪的Seiko教育研究所2 2作者没有宣布利益冲突。*通信:tsuchiya.masa@gmail.com摘要动态批判性 - 秩序与混乱之间的平衡 - 是基因组的基础