HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
HAL 是一个多学科开放存取档案馆,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要 - 我们研究开放无线接入网络(O-RAN)中的交通转向问题(TS)问题,利用其RAN智能控制器(RIC),其中RAN RAN RAN配置参数可以在接近现实的时间内共同且动态地优化。为了解决TS问题,我们提出了一种新颖的级联加固学习(CARL)框架,我们建议在其中提出状态空间分解和策略分解,以减轻对大型复杂模型和标记良好的数据集的需求。对于每个子州空间,对RL子政策进行了训练以优化服务质量(QoS)。要将CARL应用于新的网络领域,我们提出了一种知识转移方法,以根据受过训练的政策学到的知识来初始化新的子政策。为了评估卡尔,我们构建了一个数据驱动的RIC Digital Twin(DT),该数据使用现实世界中的数据进行建模,包括网络设置,用户地理分配和流量需求,以及其他tier-1 RAN操作员。我们在两个DT方案中评估了Carl,代表了两个不同的美国城市,并将其表现与惯常政策作为基线和其他竞争优化方法(即启发式和Q-表算法)进行了比较。此外,我们已经与RAN运营商进行了实地试验,以评估CARL在美国东北地区的两个地区的表现。索引术语 - 运行,交通转向,增强学习。
鲁棒性是在将深度学习模型纳入野外时要考虑的重要方面。nuber的研究一直致力于研究视觉变压器(VIT)的鲁棒性,这些研究一直是自2020年代黎明以来作为视觉任务的主流背部选择。最近,一些大型内核探手会以令人印象深刻的性能和效率卷土重来。但是,仍然尚不清楚大型内核网络是否稳健以及其稳健性的归因。在本文中,我们首先对大型内核弯曲的鲁棒性及其与典型的小核对应物的差异进行了全面评估,并在六个不同的稳健性基准数据集中进行了差异。然后分析其强大鲁棒性背后的根本因素,我们设计了来自定量和定性观念的实验,以揭示与典型的Convnets完全不同的大核转交曲线的诱因。我们的实验首次证明了纯CNN可以实现具有可比性甚至优于VIT的实质性鲁棒性。我们对遮挡方差的分析,内核注意模式和频率特征为鲁棒性提供了新的见解。代码可用:https://github.com/lauch1ng/lkrobust。