鲁棒性是在将深度学习模型纳入野外时要考虑的重要方面。nuber的研究一直致力于研究视觉变压器(VIT)的鲁棒性,这些研究一直是自2020年代黎明以来作为视觉任务的主流背部选择。最近,一些大型内核探手会以令人印象深刻的性能和效率卷土重来。但是,仍然尚不清楚大型内核网络是否稳健以及其稳健性的归因。在本文中,我们首先对大型内核弯曲的鲁棒性及其与典型的小核对应物的差异进行了全面评估,并在六个不同的稳健性基准数据集中进行了差异。然后分析其强大鲁棒性背后的根本因素,我们设计了来自定量和定性观念的实验,以揭示与典型的Convnets完全不同的大核转交曲线的诱因。我们的实验首次证明了纯CNN可以实现具有可比性甚至优于VIT的实质性鲁棒性。我们对遮挡方差的分析,内核注意模式和频率特征为鲁棒性提供了新的见解。代码可用:https://github.com/lauch1ng/lkrobust。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要 - 我们研究开放无线接入网络(O-RAN)中的交通转向问题(TS)问题,利用其RAN智能控制器(RIC),其中RAN RAN RAN配置参数可以在接近现实的时间内共同且动态地优化。为了解决TS问题,我们提出了一种新颖的级联加固学习(CARL)框架,我们建议在其中提出状态空间分解和策略分解,以减轻对大型复杂模型和标记良好的数据集的需求。对于每个子州空间,对RL子政策进行了训练以优化服务质量(QoS)。要将CARL应用于新的网络领域,我们提出了一种知识转移方法,以根据受过训练的政策学到的知识来初始化新的子政策。为了评估卡尔,我们构建了一个数据驱动的RIC Digital Twin(DT),该数据使用现实世界中的数据进行建模,包括网络设置,用户地理分配和流量需求,以及其他tier-1 RAN操作员。我们在两个DT方案中评估了Carl,代表了两个不同的美国城市,并将其表现与惯常政策作为基线和其他竞争优化方法(即启发式和Q-表算法)进行了比较。此外,我们已经与RAN运营商进行了实地试验,以评估CARL在美国东北地区的两个地区的表现。索引术语 - 运行,交通转向,增强学习。
HAL 是一个多学科开放存取档案馆,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要。我们描述了高斯州的量子纠缠和量子转向的行为,两种骨气模式,每种模式都放置在其自身的嘈杂环境中。使用kossakowski-lindblad主方程,基于完全正面的量子动力学半群的开放系统理论框架中研究了系统的动力学。The evolution of the quantum entangle- ment and quantum steering is described in terms of the covariance matrix formalism, by providing their dependence on the parameters characterising the system (squeez- ing between the modes, frequencies of the modes and their average photon numbers) and on the parameters of the noisy channels (temperatures, squeezing and phase of the environments).特别是,我们在量子转向和量子纠缠之间进行了比较,并说明纠缠是系统中转向的必要条件。
•碰撞和接触,包括车辆/设备的车辆,车辆,野生动植物的车辆,开采基础设施的车辆和道路护墙。•车辆从道路上滑出或进入对面的车道。车辆从车道或相反车道滑出的风险可能来自各种不可预测的因素,包括机械故障,不良道路和天气状况以及与操作员有关的问题。适当关注车辆维护,道路状况,天气预报和操作员培训对于减轻这些风险并确保安全驾驶条件至关重要。•制动或转向的故障•设备倾斜或翻滚•车辆失控,即使使用失控的坡道•意外加速
摘要。稳定分层流条件通常表现出风向转向,即风向随高度变化。当风力涡轮机经历这种转向流时,产生的尾流结构往往会呈现出拉伸成椭圆形,而不是对称形状或卷曲形状。观察研究表明,尾流转向的幅度小于流入流的转向,而使用执行器盘模型和执行器线模型进行的大涡模拟表明流入流转向和尾流转向之间存在一系列关系。在这里,我们展示了一系列大涡模拟,其中有一系列转向形状、一系列转向幅度、一系列风速和风力涡轮机转子的两个旋转方向,以研究对尾流偏转角的影响。这些结果可以指导尾流转向在稳定分层流中的应用。
覆盖范围的主题:1。机械结构设计:不同类型的结构框架和身体。功能需求和设计考虑因素,对于作用于结构成员和CAE分析的负载/力引起的应力模式。2。两辆三轮车车辆的功能性和动态性能要求。轮毂和轮胎特性考虑最佳性能。3。悬架和转向的系统集成,处理和骑行行为特征。4。驱动火车组件:电动机和控制器的类型及其性能标准。5。电池 /能源存储系统的新兴技术。电动电池的汽车电池类型和充电方法。 6。 电池管理系统的参数-BMS,以实现最佳性能。 7。 产品和系统测试:有关适用于电动汽车和动力列车组件的标准的讨论。 实验室测试和演示。电动电池的汽车电池类型和充电方法。6。电池管理系统的参数-BMS,以实现最佳性能。7。产品和系统测试:有关适用于电动汽车和动力列车组件的标准的讨论。实验室测试和演示。