通讯:彼得·J·施瓦茨(Peter J. Lia Crotti,医学博士,博士,遗传来源心律不齐中心,IRCC ISTITUTO Auxologico Italiano,通过Pier Lombardo,20135年,20135年,意大利米兰,电子邮件l.crotti@auxologicoco.it;或迈克尔·J·阿克曼(Michael J. Crotti和R. Neves贡献了同样的贡献。†M.J。Ackerman和P.J.Schwartz贡献了同样的贡献。补充材料可在https://www.ahajournals.org/doi/suppl/10.1161/circulationaha.124.068959获得。有关资金和披露的来源,请参见第541页。©2024 American Heart Association,Inc。
简介:肠道菌群(MB),尽管体内Aβ的主要生产者之一,在生理条件下有助于维持健康的大脑。营养不良,MB中革兰氏阴性和革兰氏阴性细菌之间的功能障碍会增加Aβ产生,这有助于大脑中β斑块的积累,这是阿尔茨海默氏病(AD)的主要组织病理学标志。维持或恢复肠道成分的益生元和益生菌的给药可能代表了一种营养策略,以预防或减少AD Symptharyalysology。这项研究的目的是评估益生菌的治疗是否可以改变AD(APP/PS1小鼠)的转基因小鼠模型的海马CA1和CA3区域中神经变性的组织病理学迹象。海马是与AD有关的大脑区域之一。
摘要:基因治疗旨在增加,替换或关闭基因以帮助治疗疾病。迄今为止,美国食品药品监督管理局(FDA)批准了14种基因治疗产品。随着对基因治疗的兴趣日益增长,可行的基因递送向量对于将新基因插入细胞是必需的。有不同种类的基因递送载体,包括病毒载体,例如慢病毒,腺病毒,逆转录病毒,腺体相关病毒等,以及非病毒载体,例如裸体DNA,脂质矢量,脂质矢量,聚合物纳米植物,exosomes等,以及最常用的病毒素。中,最关心的载体是与腺相关的病毒(AAV),因为它具有安全性,自然能够有效地将基因传递到细胞中并持续多个组织中的转基因表达。此外,可以设计AAV基因组以生成包含感兴趣的转基因序列的重组AAV(RAAV),并已被证明是安全的基因载体。最近,RAAV载体已被批准用于治疗各种罕见疾病。尽管有这些批准,但仍存在一些主要局限性,即非特异性组织靶向和宿主免疫反应。其他问题包括中和抗体,这些抗体阻止转基因递送,有限的转基因包装能力,用于每剂量的高病毒滴度和高成本。要应对这些挑战,已经开发了几种技术。此外,总结了RAAV工程策略中遇到的主要优势和局限性。关键字:AAV工程,衣壳修改,表面束缚,病毒负载,理性设计,定向进化,机器学习基于工程方法的差异,本综述提出了三种策略:基于基因工程的衣壳修饰(衣壳修饰),通过化学共轭(表面绑扎)和其他带有AAV(病毒载荷)的配方束缚的衣壳表面束缚。
1 Smolker, Rachel、Anne Petermann 和 Rachel Kijewski。2018 年。森林正处于危机之中,但生物技术并不是解决办法。The Hill。3 月 28 日。https://thehill.com/opinion/energy-environment/380363-the-forests-are-in-crisis-but-biotechnology-is-not-the-solution/ 2 Wilson, AK、JR Latham 和 RA Steinbrecher。2006 年。转基因植物中的转化诱导突变:分析和生物安全影响。生物技术和基因工程评论 23:209-237;Eckerstorfer MF、M. Dolezel、A. Heissenberger、M. Miklau、W. Reichenbecher、RA Steinbrecher 和 F. Waßmann。2019 年。欧盟对通过基因组编辑和其他新基因改造技术 (nGM) 开发的植物的生物安全考虑因素的看法。生物工程与生物技术前沿 7: 31;Tuladhar, R.、Yeu, Y.、Tyler Piazza, J. 等人,2019 年。基于 CRISPR-Cas9 的诱变经常引起靶向 mRNA 错误调节。自然通讯 10, 4056.;Li, J. 等人,2019 年。全基因组测序揭示 CRISPR/Cas9 编辑棉花植物中罕见的脱靶突变和大量固有遗传和/或体细胞克隆变异。植物生物技术杂志 17(5): 858–868;Wang, X.、M. Tu、Y. Wang 等人,2021 年。全基因组测序揭示 CRISPR/Cas9 编辑葡萄树中罕见的脱靶突变。园艺研究 8: 114。3 有关综述,请参阅 Kawall, K.、J. Cotter 和 C. Then。 2020. 扩大欧盟对农业基因组编辑技术的转基因风险评估。欧洲环境科学 32: 106。4 Commoner, Barry。2002. 揭开 DNA 神话:基因工程的虚假基础。哈珀斯杂志。2 月 1 日。https://grain.org/article/entries/375-unravelling-the- dna-myth 5 Wilson, A. 2021. 基因编辑作物和其他转基因作物会破坏可持续的粮食系统吗?Amir Kassam 和 Laila Kassam (eds.)。重新思考食品和农业。Woodhead Publishing。第 247-284 页。6 Benevenuto RF 等人。2017. 通过蛋白质组学和代谢组学分析确定转基因玉米对非生物胁迫的分子反应。PLoS ONE 12(2): e0173069。 7 Anthony, MA、Crowther, TW、van der Linde, S. 等人,2022 年。欧洲各地林木生长与菌根真菌组成和功能相关。ISME J 16,1327–1336。;Jacott, Catherine N.、Jeremy D. Murray 和 Christopher J. Ridout,2017 年。“丛枝菌根共生的权衡:抗病性、生长反应和作物育种前景”农学,7,第 4 期:75。;Lattuada 等人,2019 年。南里奥格兰德州内菌根与本地果树(桃金娘科)之间的相互作用。植物科学 29(4):1726-1738 8 Nguyen, HT 和 JA Jehle。 2007. 转基因玉米 Mon810 中 Cry1Ab 的季节性和组织特异性表达的定量分析。《植物疾病与保护杂志》114(2): 82-87;Lorch, A. 和 C. Then。2007. 转基因 MON810 玉米植株实际上会产生多少 Bt 毒素?绿色和平组织。https://www.testbiotech。org/sites/default/files/How%20much%20Bt%20toxin%20produced%20in%20 MON810_Greenpeace.pdf 9 Miller, ZD 等人。2019 年。为增加密度而改良的转基因火炬松 (Pinus taeda L.) 的解剖、物理和机械特性。木材和纤维科学 51(2): 1-10。 10 美国国家科学、工程和医学院。2019 年。森林健康和生物技术:可能性和注意事项。华盛顿特区:美国国家科学院出版社,第 94 页。 11 加拿大生物技术行动网络 (2022) 《全球转基因树木发展现状》www.cban.ca/globalstatus2020
1 USDA/APHIS法规9 CFR动物和动物产品第94、95和122部分涵盖可能引起动物传染病的生物或载体的运输。该法规定义了需要许可证的材料,”(d)生物。所有生物体或其衍生物的培养物或收集,它们可能引入或传播动物的任何传染性或感染性疾病(包括家禽)。(e)向量。所有动物(包括家禽),例如小鼠,鸽子,豚鼠,大鼠,雪貂,兔子,鸡,狗,狗,类似,这些动物已被生物体治疗或接种,或者患有感染性,感染性或感染或感染任何动物或疾病的动物性或传染性疾病,或者患有任何感染性,感染性或传染性疾病或疾病。
该试验的摘要基本原理尽管在癌症免疫疗法中使用工程的T细胞已大大推进了血液学恶性肿瘤的治疗,但在治疗实体瘤的治疗方面达到有意义的临床反应仍然具有挑战性。我们研究了人类白细胞抗原A*02:01阳性黑色素瘤相关抗原A1(MAGEA1)的阳性阳性患者 - 阳性的阳性患者 - 阳性阳性抗原A1(MAGEA1) - 阳性晚期实体瘤,在人类白细胞抗原A*02:01阳性患者中,我们研究了IMA202的安全性和耐受性。试验设计2+2试验设计是一种基于最大可接受的剂量限制性毒性(DLT)25%的算法设计,样本量由算法设计驱动,最多16名患者。ima202由表达T细胞受体(TCR)的自体遗传改性的细胞毒性CD8 + T细胞组成,该细胞特异于MAGEA1衍生的九种氨基酸肽。合格的患者进行了白细胞术,分离了T细胞,用慢病毒载体携带MageA1特异性TCR和淋巴结凝集(Fludarabine/Cyclophophamide)转导的T细胞,并注入中位数为1.4×10 9的特定T细胞(范围为0.086×10 9-2.57×9-2.57-2.2.57-2.2.57×9-2.57×9-2.57-2.2.57;IMA202的安全性未观察到DLT。 最常见的3-4级不良事件是细胞质减少症,即中性粒细胞减少症(81.3%),淋巴细胞减少症(75.0%),贫血(50.0%),血小板减少症(50.0.0%)和白细胞减少症(25.0%)。 13例患者经历了细胞因子释放综合征,包括一个3级事件。 在两名患者中观察到了与免疫效应细胞相关的神经毒性综合征,两者均为1级。IMA202的安全性未观察到DLT。最常见的3-4级不良事件是细胞质减少症,即中性粒细胞减少症(81.3%),淋巴细胞减少症(75.0%),贫血(50.0%),血小板减少症(50.0.0%)和白细胞减少症(25.0%)。13例患者经历了细胞因子释放综合征,包括一个3级事件。在两名患者中观察到了与免疫效应细胞相关的神经毒性综合征,两者均为1级。IMA202在16例患者中的疗效,11名(68.8%)患者的疾病稳定(SD)是其最佳总体反应(实体瘤的反应评估标准V.1.1)。五名患者在靶病变中最初的肿瘤收缩,一名患有SD的患者持续
许多人,包括消费者,政治家以及越来越多的科学家 - 一直对某些转基因修饰(“ GM”)作物以及含有它们的食物的环境和健康影响越来越关注。尽管许多转基因农作物都经过抗拒除草剂的设计,因此允许使用更有限和有针对性的除草剂使用,但具有GM作物的农业实践却转移到明显更高的除草剂中,部分原因是杂草的除草剂耐药性的增加。2国际癌症研究机构最近将农民广泛使用的除草剂分类为“可能”或“可能的”致癌物,而美国国家科学院已经召集了一个委员会,以评估委员会,以评估GM作物的环境和健康影响。这是美国粮食生产的关键问题,因为该国种植的大豆和玉米中有90%是基因修改的。食品药品监督管理局(“ FDA”)是负责监管美国食品安全的联邦机构。目前,它认为其有限的监管GM食品的权力主要评估其对食用这些食物的人的直接影响。即使在这种直接的健康和安全效果方面,FDA也轻轻地行使了其权威,因为GM食品通常是安全的,因此对其进行了最少的审查。
要实现在治疗应用中工程细胞的潜力,必须在治疗功效窗口内表达转基因。拷贝数和其他外在噪声来源的差异会在转基因表达中产生方差,并限制合成基因回路的性能。在治疗背景下,转基因的超生理表达可以损害工程表型并导致毒性。为了确保狭窄的转基因表达范围,我们设计和表征了co mpact m icrornam-iparna-iSage(命令)(命令),一个单移,基于microRNA的不相互分的前馈回路。我们通过实验调整命令输出配置文件,并为系统建模以探索其他调整策略。通过将命令与两基因实现进行比较,我们强调了单转录体系结构提供的精确控制,尤其是在相对较低的副本编号下。我们表明,指令严格调节慢病毒的转基因表达,并精确控制原代人T细胞,原代大鼠神经元,原代小鼠胚胎成纤维细胞和人类诱导的多能干细胞的表达。最后,命令有效地设置了狭窄窗口中临床相关的转基因FMRP1和FXN的水平。一起,命令是一种紧凑的工具,非常适合精确指定治疗货物的表达。
阿尔茨海默氏病(APP/PS1)的小鼠模型通常会随着年龄的增长而经历认知能力下降。G6PD表现出更好的保护,以防止与年龄相关的功能下降,包括代谢和肌肉功能的IM证明以及与野生型对应物相比的脆弱性。重要的是,G6PD-TG小鼠在男性和雌性中不同年龄的大脑中DNA氧化的积累减少。进一步探讨了调节神经退行性疾病中G6PD活性的潜在益处,生成了三重转基因小鼠(3XTG G6PD),过表达APP,PSEN1和G6PD基因。尽管海马中的淀粉样蛋白β(aβ)水平相似,但在3XTG G6PD小鼠中阻止了APP/PS1小鼠的认知下降特征。这挑战了阿尔茨海默氏病(AD)病因的主要假设以及该领域的大多数治疗努力,这是基于β在认知保存中至关重要的观念。值得注意的是,G6PD的抗氧化特性导致氧化应激参数降低,例如改善的GSH/GSSG和GSH/CYSSSSG比率,而没有氧化损伤标记的重大变化。此外,3XTG G6PD小鼠中的元波动变化增加了大脑能量状态,反对阿尔茨海默氏症模型中观察到的低代谢。值得注意的是,较高的呼吸汇率表明碳水化合物用量增加。由β为β的临床试验的相对失败引起了对淀粉样蛋白级联假设的严重怀疑,以及阿尔茨海默氏症药物的发展是否遵循正确的路径。我们的发现突出了靶向葡萄糖代谢酶的重要性,而不仅仅是在阿尔茨海默氏症研究中专注于β,主张更深入地探索葡萄糖代谢在认知保存中的作用。
遗传起源心律心律不齐中心的彼得·J·施瓦茨(Peter J. Schwartz) Auxologico Italiano,通过Pier Lombardo,20135年,20135年意大利米兰,电子邮件l.crotti@auxologico.it,或Michael J. Ackerman,MD,MD,博士,Mayo Windland Windland Smith Smith Smith Rice Hegethm遗传性心律诊所和突然的死亡基因组实验室,Guggenheim 501,Mayo Clinic,Mayo Clinic,rochester,Rochester,Rochester,Rochester,Rochester,Rochester,Rochester,Mn.559905990590599059905905905905905905.55555555555555555555999色ackerman.michael@mayo.edu *l。 Crotti,R。Neves,M.J。Ackerman和P.J. Schwartz贡献了同样的贡献。 补充材料可在https://www.ahajournals.org/doi/suppl/10.1161/circulationaha.124.068959获得。 有关资金和披露的来源,请参见第XXX页。 ©2024 American Heart Association,Inc。遗传起源心律心律不齐中心的彼得·J·施瓦茨(Peter J. Schwartz) Auxologico Italiano,通过Pier Lombardo,20135年,20135年意大利米兰,电子邮件l.crotti@auxologico.it,或Michael J. Ackerman,MD,MD,博士,Mayo Windland Windland Smith Smith Smith Rice Hegethm遗传性心律诊所和突然的死亡基因组实验室,Guggenheim 501,Mayo Clinic,Mayo Clinic,rochester,Rochester,Rochester,Rochester,Rochester,Rochester,Rochester,Mn.559905990590599059905905905905905905.55555555555555555555999色ackerman.michael@mayo.edu *l。 Crotti,R。Neves,M.J。Ackerman和P.J.Schwartz贡献了同样的贡献。补充材料可在https://www.ahajournals.org/doi/suppl/10.1161/circulationaha.124.068959获得。有关资金和披露的来源,请参见第XXX页。©2024 American Heart Association,Inc。