转导条件 • 您必须根据经验确定每种细胞系的转导条件和感染复数 (MOI)。如果需要共感染,我们建议对 Cas9 至 CRISPR 文库慢病毒颗粒使用 5–10 的 MOI 比率,以达到最佳基因敲除程度。 • 感染期间使用含较低水平 FBS(例如 3– 5% FBS)的培养基可能会增加某些细胞类型的转导效率。 • Polybrene™(六甲溴铵)可以将慢病毒转导到人细胞的效率提高 2–10 倍。您必须根据经验确定目标细胞的最佳 Polybrene™ 浓度(例如最大感染性,最小毒性)。我们建议使用浓度范围(2–8 µg/mL)对 Polybrene™ 耐受性进行初步测试。 • 如果您计划使用嘌呤霉素进行选择,则必须首先确定选择转导细胞所需的最佳嘌呤霉素浓度。抗生素批次、细胞类型、细胞生长动力学和细胞培养条件(包括细胞密度)会影响筛选所需的嘌呤霉素量。使用嘌呤霉素进行筛选通常需要 7-10 天。
在我们目前的工作中,我们需要一个针对Sprague-Dawley大鼠血脑屏障(BBB)内皮细胞(EC)的RAAV,但没有其他脑细胞。在系统地给药时,AAV血清型AAV9和AAV2可以在小鼠中转导BBB细胞和脑实质细胞(Dayton等,2012; Fu等,2003)。capsid变体(例如AAV9衍生的变体AAV PHP.B和AAV2衍生的变体AAV-BR1)已通过氨基酸插入进行设计,以改善小鼠的BBB转导(Hordeaux等,2018;Körbelin等,2016,2016)。尤其是,AAV2上限变体BR1在高度的小鼠BBB中转导EC,只有很少的非血管转导,并且在许多研究中使用了各种小鼠模型(Liu等,2019; Nikolakopoulou,nikolakopoulou等,2021; 2021; 2021; Rasmussen et al。,20223; Chao tan;据我们所知,目前尚无出版物在大鼠模型中测试AAV-BR1变体。
机械能力转化为生化信号的机械转导,对于人类的发育和生理学至关重要。在从整个身体,器官,组织,细胞器到分子的各个级别上都可以观察到。失调会导致各种疾病,例如肌肉营养不良,高血压诱导的血管和心脏肥大,骨修复改变和细胞死亡。由于机械转运发生在纳米级,因此纳米级和应用纳米技术对于研究分子机制和机械转导途径的强大。原子力显微镜,磁性和光学镊子通常用于单分子水平的力测量和操作。力也用于通过特定类型的纳米材料进行组织工程的特定类型来控制细胞。机械转导研究将变得越来越重要,因为纳米医学领域的子学科将变得越来越重要。在这里,我们在机械转导过程中使用力测量和细胞水平的力测量和操纵来回顾纳米技术方法,这在纳米医学的发展中越来越重要。
其中κa(b)ex是与外部通道的耦合速率,其输入信号量ˆ a†(ˆ b†)中,ex [ω],κa(b)i是模式的内在损耗量ˆ a†(ˆ b†)的内在损耗率,由于与环境相结合而导致的噪声(。是由于[ω]中的输入噪声ˆ J的耦合,是中间模式M†J的内在损耗率。最终模式ˆ A†(ˆ B†)[ω]受总耗散率κa(b)=κa(b),ex +κa(b),i和χj的约束,是将其定义为χ -1 j j i(ω + um +κj) +κj / j j j y(ω +κj j)的模式敏感性定义为为了简单,我们将从现在开始为所有频域模式运算符的[ω]符号删除。根据输入输出关系,输入和输出场连接到稳定性链的链条模式
由无处不在的启动子驱动的记者。AAV9-PHP.B矢量(AAV-CBA-EGFP)在CBA启动子下表达EGFP 115(绿色),有效地转导了内毛细胞(IHC),外毛细胞(OHCS)116(Magenta)(Magenta),辅助细胞和其他小鼠Cochlea中的细胞。IHC和OHC通过117个荧光腓骨(Magenta)鉴定。 f。用AAV载体转导的细胞在GRES(AAV-GRE-EGFP)的控制下表达EGFP标记基因118。 值得注意的是,当GRE控制119表达时,在毛细胞中未观察到EGFP。 g,h。用AAV载体转导的细胞在调节元件的控制下表达120 mmgjb2.ha(g)或hsgjb2.ha(h)。 比例尺:10μm(E,F),30 121 µm(G,H)。 122IHC和OHC通过117个荧光腓骨(Magenta)鉴定。f。用AAV载体转导的细胞在GRES(AAV-GRE-EGFP)的控制下表达EGFP标记基因118。值得注意的是,当GRE控制119表达时,在毛细胞中未观察到EGFP。g,h。用AAV载体转导的细胞在调节元件的控制下表达120 mmgjb2.ha(g)或hsgjb2.ha(h)。比例尺:10μm(E,F),30 121 µm(G,H)。122
重组腺相关的病毒载体(AAVS)广泛用于研究和治疗中的基因递送。AAV9变体(例如AAV9-PHP.EB)经常用于基因递送到中枢神经系统(CNS),而AAV2变体对CNS有效转导的有效报告有限。为了克服AAV2的局限性,我们解决了基于AAV2血清型的新型脑靶向AAV矢量。迄今为止,我们已经证明了通过使用随机肽插入的AAV2库来获得的cereaav.o,可以通过全身注射有效地转导小鼠,而摩尔莫斯特脑有效地转导。此外,与CereAav.o相比,通过单个氨基酸取代,我们已经确定了一种新型的Cereaav.y突变体,其特异性和更高的转导效率。最近,Kawabata等人。已经证明,在AAV-BR1衣壳中,将单个氨基酸取代,将谷氨酰胺变为587(Q587N)的天冬酰胺,可能会增加BBB的渗透率,并重定向基因递送形成小囊囊内皮细胞对小鼠脑中神经元的囊泡内皮细胞。
我们在恒河猴中测试了一种新的体内造血干细胞 (HSC) 转导/选择方法,使用 HSC 嗜性、整合性、辅助依赖性腺病毒载体 (HDAd5/35++),该载体旨在在红细胞 (RBC) 中表达人类 g -珠蛋白以治疗血红蛋白病。我们发现,HDAd5/35++ 载体在静脉注射到粒细胞集落刺激因子 (G-CSF)/AMD3100 动员的动物体内后优先转导 HSC,并且转导的细胞返回骨髓和脾脏。该方法耐受性良好,并且通常与静脉腺病毒载体注射相关的促炎性细胞因子的激活通过用地塞米松联合白细胞介素 (IL)-1 和 IL-6 受体阻滞剂进行预处理而成功减弱。使用我们基于 MGMT P140K 的体内选择方法,g-珠蛋白 +
摘要:CAR-T 细胞疗法涉及通过在 T 细胞表面添加嵌合抗原受体 (CAR) 对 T 细胞进行基因改造,使其识别和攻击肿瘤细胞。在本研究中,我们使用 AAV 血清型 6 (AAV6) 的双重转导将抗 CD19 CAR 整合到人类 T 细胞的已知基因组位置。第一个病毒载体表达 Cas9 内切酶和针对 T 细胞受体 alpha 恒定基因座的向导 RNA (gRNA),而第二个载体携带用于同源介导的 CAR 插入的 DNA 模板。我们评估了三种 gRNA 候选物并确定了它们在产生插入/缺失方面的效率。AAV6 成功地在体外传递了 CRISPR/Cas9 机制,双重转导的分子分析表明 CAR 转基因整合到了所需位置。与通常用于生成 CAR-T 细胞的随机整合方法相比,靶向整合到已知基因组位点可以降低插入诱变的风险,并提供更稳定的 CAR 表达水平。至关重要的是,这种方法还可以敲除内源性 T 细胞受体,从而允许从同种异体供体中提取靶细胞。这带来了令人兴奋的“现成”通用免疫疗法的可能性,这将大大简化 CAR-T 细胞的生产和给药。
使用逆转录病毒或慢病毒载体转导的干细胞或 T 细胞进行体外基因治疗,在治疗免疫缺陷和癌症方面已显示出显著的疗效。然而,这个过程成本高昂,技术难度大,而且不易推广到大量患者群体,特别是在世界欠发达地区。直接体内基因治疗可以避免这些问题,而且在临床试验中,腺相关病毒 (AAV) 载体的这种方法已被证明对影响肝脏和中枢神经系统等分化组织的疾病是安全有效的。然而,在全身给药后用 AAV 在体内转导淋巴细胞的能力尚未得到仔细探索。在这里,我们表明,在小鼠全身给药后,AAV8 载体的标准制剂和外泌体相关制剂都可以有效转导各种免疫细胞群,包括 CD4 + T 细胞、CD8 + T 细胞、B 细胞、巨噬细胞和树突状细胞。我们通过检测 AAV 基因组和转基因 mRNA 提供了 T 细胞转导的直接证据,并表明可以表达细胞内和跨膜蛋白。这些发现确立了 AAV 介导的体内基因递送至免疫细胞的可行性,这将促进基础研究和应用研究,以实现直接体内基因免疫疗法的目标。