主要的开角青光眼(POAG)和婴儿芳香青光眼(IAG)分别是成人和婴儿视力丧失的重要贡献者。这两种指示都与小梁网(TM)的纤维化有关,该小梁网(TM)减弱了幽默流出,眼内压(IOP)和视网膜神经节细胞(RGC)死亡。转化生长因子β2(TGFβ2)与POAG和IAG中的间充质转变(EMT)有关。TGFβ2的主要调节剂是Decorin,这是一种蛋白聚糖,其表达在青光眼患者中的表达降低。在这项研究中,我们证明了使用腺相关病毒(AAV)载体AAV-IKV的鼠前腔高度感染,包括睫状体,角膜基质,TM和角膜神经。表达组成性活跃的TGFβ2(AAV-IKV-TGFβ2CS)的AAV-IKV导致小鼠中TM的纤维化,随后IOP和RGC死亡增加了TM的纤维化,对POAG和IAG的病理学特征进行了建模。从AAV-IKV载体(AAV-IKV-DECORIN)中表达了人类装饰蛋白,使AAV-IKV-TGFβ2CS注射的小鼠在AAV-IKV-TGFβ2CS中减弱了纤维化,IOP和RGC死亡,这表明AAV-IKV-DECORIN可能会分别用作POAG和IAG的治疗。最后,非人类灵长类动物中AAV-IKV-GFP载体的腔内注射导致角膜中GFP的表达而没有任何可见的毒性。
老龄化人口的现象正在以急剧的速度前进。阿尔茨海默氏病(AD)和帕金森氏病(PD)是两种最常见的与年龄相关的神经退行性疾病,这两种疾病主要以有毒蛋白的积累和神经元结构的逐渐消亡为特征。关于脑淋巴引流系统的最新发现已经促成了越来越多的研究,证实了其新作用,包括清除大分子废物和免疫细胞的运输。值得注意的是,水通道蛋白4介导的淋巴转运对于维持神经稳态至关重要,在衰老过程中受到破坏,并且在AD和PD的发病机理中进一步损害。功能性脑膜淋巴管有助于脑脊液排出到深宫颈淋巴结中,在桥接中枢神经系统中具有周围免疫反应的桥接。这些脑膜淋巴管中的功能障碍加剧了与年龄相关的神经退行性疾病的病理轨迹。本评论探讨了淋巴系统和脑膜淋巴管对衰老脑及其相关神经退行性疾病的调节作用。它还封装了靶向非药物干预措施的潜在机制和前景的见解。
复制蛋白A(RPA)是单个链DNA(ssDNA)结合蛋白,可协调各种DNA代谢过程,包括DNA复制,修复和重组。RPA是一种异三聚体蛋白,具有六个功能性寡糖/寡核苷酸(OB)结构域和柔性接头。 灵活性使RPA能够采用多种配置,并被认为可以调节其功能。 在此,使用单分子共焦荧光显微镜与光学镊子和粗粒细粒的分子动力学模拟结合使用,我们研究了在张力下ssDNA上单个RPA分子的扩散迁移。 在3 pn张力和100 mM KCl时,扩散系数D是最高(20,000个核苷酸2 /s),当张力或盐浓度增加时,则显着降低。 我们将张力效应归因于段转移,这受到DNA拉伸和盐效应的阻碍,降低了RPA-SSDNA的结合位点大小和相互作用能量的增加。 我们的综合研究使我们能够估计通过通过RPA上多个结合位点在DNA上的遥远位点的短暂桥接发生的细胞分段转移事件的大小和频率。 有趣的是,RPA三聚芯的删除仍然允许大量的ssDNA结合,尽管降低的接触面积使RPA的移动性增加了15倍。 最后,我们表征了RPA拥挤对RPA迁移的影响。 这些发现揭示了如何重塑高亲和力RPA-SSDNA相互作用以产生访问,这是多个DNA代谢过程中的关键步骤。RPA是一种异三聚体蛋白,具有六个功能性寡糖/寡核苷酸(OB)结构域和柔性接头。灵活性使RPA能够采用多种配置,并被认为可以调节其功能。在此,使用单分子共焦荧光显微镜与光学镊子和粗粒细粒的分子动力学模拟结合使用,我们研究了在张力下ssDNA上单个RPA分子的扩散迁移。在3 pn张力和100 mM KCl时,扩散系数D是最高(20,000个核苷酸2 /s),当张力或盐浓度增加时,则显着降低。我们将张力效应归因于段转移,这受到DNA拉伸和盐效应的阻碍,降低了RPA-SSDNA的结合位点大小和相互作用能量的增加。我们的综合研究使我们能够估计通过通过RPA上多个结合位点在DNA上的遥远位点的短暂桥接发生的细胞分段转移事件的大小和频率。有趣的是,RPA三聚芯的删除仍然允许大量的ssDNA结合,尽管降低的接触面积使RPA的移动性增加了15倍。最后,我们表征了RPA拥挤对RPA迁移的影响。这些发现揭示了如何重塑高亲和力RPA-SSDNA相互作用以产生访问,这是多个DNA代谢过程中的关键步骤。
RA Eguiluz、M. Munim、KB Kaylan、GH Underhill 和 DE Leckband。“VE-钙粘蛋白信号和基质硬度调节通过内皮单层细胞的力量转导 - 钙粘蛋白信号和基质硬度调节通过内皮单层细胞的力量转导”。载于:AIChE 年会论文集。2016 年 11 月。网址:https://www.aiche.org/conferences/aiche-annual-meeting/2016/proceeding/paper/68g-ve-cadherin- signals-and-substrate-stiffness-regulate-force-transduction-through-endothelial。
•脑功能和临床问题•毛细胞的听力和机械转导•光感受器的视觉和信号转导•视网膜和视力恢复中的神经编码•突触和树突刺的电化学•神经元素的神经元相互作用和突触可塑性•大脑范围•大脑的范围•大脑范围•识别•naviative•spat rothapity•spat rotaigity•naviative•naviative•naviative•naviative•naw•行为神经科学•分析和解释脑电图数据•脑部计算机界面
•脑功能和临床问题•毛细胞的听力和机械转导•光感受器的视觉和信号转导•视网膜和视力恢复中的神经编码•突触和树突刺的电化学•神经元素的神经元相互作用和突触可塑性•大脑范围•大脑的范围•大脑范围•识别•naviative•spat rothapity•spat rotaigity•naviative•naviative•naviative•naviative•naw•行为神经科学•分析和解释脑电图数据•脑部计算机界面
靶向基因传递到大脑是神经科学研究的关键工具,并且具有治疗人类疾病的重要潜力。然而,通常通过入侵注射限制其适用的研究范围和临床应用的范围,通常通过侵入性注射来进行常见基因载体(例如腺相关病毒(AAV))的特定地点传递。另外,集中的超声血脑屏障开口(FUS-BBBO)进行了无创,可以从系统性循环中使AAVS进入大脑的位点特异性进入。但是,当与天然AAV血清型结合使用时,该方法的转导效率有限,并且会导致周围器官的实质性不良转导。在这里,我们使用高吞吐量在体内选择来设计新的AAV矢量,专门设计用于FUS-BBBO位置的局部神经元转导。所产生的载体显着增强了超声靶向的基因递送和神经元的偏移,同时减少了周围转导,从而在两种经过测试的小鼠菌株中靶向特异性的靶向提高了十倍以上。除了增强非侵入性基因递送到特定大脑区域的唯一已知方法外,这些结果还建立了AAV矢量为特定物理递送机制而进化的AAV量的能力。
图 1. Cas9D10A 切口酶诱导 HD 和 DM1 iPSC 衍生细胞收缩。A) 顶部:用 S100β 和 DAPI 染色的 HD iPSC 衍生星形胶质细胞的代表性共聚焦图像。底部:实验时间线。B) 代表性小池 PCR 印迹显示 HD iPSC 衍生星形胶质细胞的收缩,这些星形胶质细胞仅用 Cas9D10A 转导,或者用 Cas9D10A 切口酶和 sgCTG 转导 6 周。C) 对 HD iPSC 衍生星形胶质细胞的小池 PCR 印迹进行量化。D) 顶部:用 β-Tubulin III 和 DAPI 染色的 HD iPSC 衍生皮质神经元的代表性共聚焦图像。底部:实验时间线。 E) 代表性小池 PCR 印迹显示 HD iPSC 衍生的皮质神经元收缩,这些神经元仅用 Cas9D10A 转导或用 Cas9D10A 和 sgCTG 转导 6 周。F) 对 HD iPSC 衍生的皮质神经元的小池 PCR 印迹进行量化。G) 顶部:用 β-Tubulin III 和 DAPI 染色的 DM1 iPSC 衍生的皮质神经元的代表性共聚焦图像。底部:实验时间线。H) 代表性小池 PCR 印迹显示 HD iPSC 衍生的皮质神经元收缩
描述了生物工程P4- ekorhe的构建以及一种可产生非常高产量(每毫升最多10个12个颗粒)的综合方法,从而可以通过合成生物学和优化的Upstream和下链式处理,可以使用类似病毒的颗粒来转导类似病毒的颗粒来转导类似病毒的颗粒。最终产物是一种以多透明素的形式散布的基因溶剂抗菌剂,在p4- ekorhe颗粒内包装之前和之后都是完全可正常的。以其裂解蛋白为特征的多肌蛋白盒的抗菌活性在纯细菌大肠杆菌(大肠杆菌)培养物和使用A549的感染模型中在体内进行了测试。这项工作例证了几种生物生物生产方法,并演示了如何利用P4和P2噬菌体的病毒学建立生物处理,以产生非常高产量的转导颗粒,从而避免自然病毒在维持最终产物抗药性的同时,避免自然病毒。