CRISPR相关的TN7转座子(铸造)共同OPT CAS基因用于RNA引导的转座。在基因组数据库中极为罕见。最近的调查报道了类似TN7样的转座子,该座子选择了I型I-F,I-B和V-K CRISPR效应子。在这里,我们通过对元基因组数据库的生物信息学搜索扩展了报告的铸造系统的多样性。我们发现了所有已知铸件的体系结构,包括级联效应器的布置,目标归巢方式和最小V-K系统。我们还描述了选择了I型I-C和IV型CRISPR-CAS系统的铸造家族。我们对非TN7施放的搜索确定了包括核酸酶死亡CAS12的候选者。这些系统阐明了CRISPR系统如何与转型共同发展并扩展可编程基因编辑工具包。
除了提供快速工作流程外,Illumina DNA准备化学为输入类型和输入量提供了非凡的灵活性,包括直接的新鲜血液或唾液的直接样品输入,并支持广泛的应用(表1)。Illumina DNA Prep与全基因组测序(WGS)应用兼容,包括人,小/微生物和大型复杂基因组测序。对于有针对性的DNA富集应用,包括不同尺寸的固定和自定义面板以及全外显子组测序(WES),Illumina提供具有富集的Illumina DNA Prep,其具有丰富的珠子连接的转座体(EBLTS),以提供丰富的兼容库兼容库。此外,具有富集的Illumina DNA准备与Illumina和第三方富集探针/面板兼容,从而使内容可移植性提高了灵活性。
随着越来越多的先天性心脏病(CHD)居住到成年的儿童,患有CHD的成年人的数量将增加。在7,497名比利时患者患有CHD的患者中,成年生存率从1970 - 1974年出生的儿童的81%增加到1990 - 1992年出生的儿童的89%(p <0.01)(3)(3)。生存的改善集中在中等(例如法洛的四边形,主动脉的缩写)和严重(例如大动脉的转座,单脑膜生理学)心脏病变量同胞(3)中(3)。对2000 - 2010年魁北克通用健康覆盖数据库的分析发现,患有严重ACHD病变的成年人数量增加了55%(95%CI:51-62%)(4)。经常引用冠心病的出生率正在增加(5)。然而,在非侵入性诊断工具(例如,超声心动图,脉搏血氧仪)的发展后,CHD的诊断更有可能正在改善(5)。
摘要 人类内源性逆转录病毒 (HERV) 约占人类基因组的 8%。HERV 在早期胚胎中转录,在体细胞中表观遗传沉默,病理条件下除外。HERV-K 被认为可以保护胚胎免受外源性病毒感染。然而,体细胞中不受控制的 HERV-K 表达与多种疾病有关。在这里,我们表明 SOX2 对 HERV-K LTR5H 至关重要,它在维持干细胞多能性方面起着关键作用。在没有 Env 表达的情况下,HERV-K 在生产细胞内进行逆转录转座。此外,我们在表达 SOX2 的诱导多能干细胞的长期培养中发现了新的 HERV-K 整合位点。这些结果表明,HERV-K 对 SOX2 的严格依赖使得 HERV-K 能够在进化过程中保护早期胚胎,同时限制 HERV-K 逆转座对这些早期胚胎中宿主基因组完整性的潜在有害影响。
摘要 马达加斯加长春花(Catharanthus roseus)属于夹竹桃科。这种药用植物原产于马达加斯加,可生产许多重要药物,包括单萜吲哚生物碱 (MIA) 长春新碱和长春花碱,用于世界各地治疗癌症。在这里,我们提供了一个新版本的 C. roseus 基因组序列,该序列是通过结合 Oxford Nanopore Technologies 长读和 Illumina 短读获得的。这个更连续的组装由 173 个支架组成,总长度为 581.128 Mb,N50 为 12.241 Mb。使用公开的 RNAseq 数据,预测并功能注释了 21,061 个蛋白质编码基因。总共 42.87% 的基因组被注释为可转座因子,其中大多数是长末端重复序列。随着对 MIA 产生植物基因组的了解日益增多,这个更新版本应该会简化进化研究,从而更好地了解 MIA 生物合成途径的进化。
摘要 背景 卵巢癌 (OC) 是女性第五大致命癌症,迫切需要新型疗法。临床前研究表明,DNA 甲基转移酶抑制剂 (DNMTis) 可以逆转 OC 中的免疫抑制肿瘤微环境。抑制 DNA 甲基转移酶可激活双链 (ds)RNA 的转录,包括转座因子。这些 dsRNA 激活细胞质中的传感器并触发 I 型干扰素 (IFN) 信号传导,招募宿主免疫细胞杀死肿瘤细胞。腺苷脱氨酶 1 (ADAR1) 由 IFN 信号传导诱导,并通过 A 到 I 核苷酸变化编辑哺乳动物 dsRNA,这在测序数据中读取为 A 到 G 的变化。这些编辑后的 dsRNA 无法被 dsRNA 传感器感知,因此 ADAR1 在负反馈回路中抑制 I 型 IFN 反应。我们假设减少 ADAR1 编辑将增强 DNMTi 诱导的免疫反应。方法用 DNMTi 体外处理人类 OC 细胞系,然后进行 RNA 测序以测量 RNA 编辑。Adar1 在 ID8 Trp53 -/- 小鼠 OC 细胞中被稳定敲低。用模拟或 DNMTi 处理测试对照细胞 (shGFP) 或 shAdar1 细胞。使用流式细胞术对肿瘤浸润免疫细胞进行免疫表型分析,并分析细胞培养上清液中分泌的趋化因子/细胞因子。给小鼠注射同源 shAdar1 ID8 Trp53 -/- 细胞并用四氢尿苷/DNMTi 处理,同时每 3 天给予抗干扰素 α 和 β 受体 1、抗 CD8 或抗 NK1.1 抗体。结果我们表明,在体外 DNMTi 处理后,ADAR1 会编辑人类 OC 细胞系中的转座因子。与单独干扰相比,将 ADAR1 敲低与 DNMTi 相结合可显著增加促炎性细胞因子/趋化因子的产生和对 IFN- β 的敏感性。此外,DNMTi 治疗和 Adar1 缺失可减轻肿瘤负担并延长 OC 免疫功能正常的小鼠模型的生存期。将 Adar1 缺失和 DNMTi 相结合可引发最强大的抗肿瘤反应,并通过增加 CD8+ T 细胞的募集和激活来改变免疫微环境。
摘要 CRISPR 相关转座子 (CAST) 会将 Cas 基因纳入 RNA 引导的转座。CAST 在基因组数据库中极为罕见;最近的调查报告称,Tn7 样转座子会将 IF、IB 和 VK 型 CRISPR 效应子纳入。在这里,我们通过对宏基因组数据库进行生物信息学搜索来扩展已报告的 CAST 系统的多样性。我们发现了所有已知 CAST 的新架构,包括级联效应子的新排列、新的自靶向模式和最小 VK 系统。我们还描述了已将 IC 型和 IV 型 CRISPR-Cas 系统纳入的新 CAST 家族。我们对非 Tn7 CAST 的搜索确定了将 Cas12a 纳入水平基因转移的推定候选者。这些新系统揭示了 CRISPR 系统如何与转座酶共同进化并扩展了可编程基因编辑工具包。
本期特刊将巩固在遗传学,进化,细胞遗传学和细胞基因组学领域内的现有信息,并概述其在植物保护中的作用。我们欢迎有关各种主题的论文,其中包括但不限于以下内容:评估遗传和细胞遗传学多样性;人口遗传结构;基因流和连通性;局部适应;保护基因组学;保护稀有和受威胁的物种;恢复遗传学;种质管理;杂交和渗入的影响;多倍体和染色体重排的作用;鱼类和吉什应用;染色质组织;转座元素的动力学;和基因组大小的进化。我们特别欢迎提交多种方法的方法,并概述了在迅速变化的世界中基因组变异对植物保护的含义。因此,该主题将成为研究人员,保护生物学家和对保护植物生物多样性感兴趣的政策制定者的重要资源。
胚胎基因组的激活标志着发育生物体中第一次主要的转录浪潮。小鼠 2 细胞胚胎和人类 8 细胞胚胎中的合子基因组激活 (ZGA) 对发育至关重要。本文,我们报告在幼稚胚胎干细胞中发现了人类 8 细胞样细胞 (8CLC),其转录类似于人类 8 细胞胚胎。它们表达 ZGA 标记,包括 ZSCAN4 和 LEUTX ,以及转座因子,例如 HERVL 和 MLT2A1 。8CLC 显示降低的 SOX2 水平,可在体外使用 TPRX1 和 H3.Y 标记蛋白进行识别。转录因子 DUX4 的过表达和剪接体抑制会增加人类 ZGA 样转录。令人兴奋的是,8CLC 标记物 TPRX1 和 H3.Y 也在 ZGA 阶段的 8 细胞人类胚胎中表达,因此可能与体内相关。 8CLCs 为表征人类 ZGA 样转录提供了独特的机会,并可能为人类胚胎发生早期事件提供重要见解。
Roy E., Chiu G, … Cao W (2022) 小胶质细胞和神经细胞中协同的 I 型干扰素信号传导促进与淀粉样 β 斑块相关的记忆障碍。免疫,55:879-894 Cao W (2022) IFN-衰老:将衰老与干扰素反应结合起来。前沿衰老,3:870489 Ramirez P, … Cao W. ,……和 Frost B (2022)。致病性 tau 加速小鼠中枢神经系统中与衰老相关的转座因子激活,Prog Neurobiol 208:102181。Roy ER 和 Cao W (2020) 阿尔茨海默病中的抗病毒免疫反应:连接点。前沿神经科学。14:577744。 Roy ER、Wang B 和 Cao W (2020) I 型干扰素反应导致阿尔茨海默病中的神经炎症和突触丢失。J Clin Invest。130:1912-30。