用于调整内源基因表达的抽象工具是确定各种细胞表型的遗传基础的关键。尽管在弓形虫中可以使用合成的可调节性,但基因表达的靶向和组合下调的可扩展方法(如RNA干扰)尚未得到发展。为了研究CRISPR介导的转录调控的可行性,我们研究了来自甲状腺链球菌和嗜热链球菌的两个催化无活性Cas9(DCAS9)直系同源物的功能。在添加靶向启动子的单个指定RNA(SGRNA)和表面抗原基因SAG1的5 9个未翻译区域(UTR)后,我们对靶基因的蛋白质刺激蛋白质的变化通过流量细胞仪的蛋白质刺激变化,用于转录报告基因和immu-immu-nosu-nosu-noce。我们发现DCAS9直系同源物产生了一系列靶基因表达水平,并且抑制程度持久且稳定地遗传。因此,化脓性链球菌和嗜热链球菌DCAS9可以有效地产生弓形虫中的基因表达水平。两个DCAS9的独特的SGRNA支架要求允许通过转录调制,基于显微镜的研究标记或其他基于DCAS9的方法同时检查两个不同的基因座。利用新近获得的基因组转录起始站点数据,这些工具将有助于开发弓形虫的新功能筛查方法。
诱导的所需基因表达一直是揭示基因功能和调节合成生物学和治疗应用的细胞活性的重要策略。Apart from ectopically expressing additional copies of a gene by introducing their open reading frames (ORFs), methods to arti fi cially activate endogenous copies of genes have been explored, including transcription activating factors tethered to zinc fi nger proteins ( Beerli et al., 2000 ) and transcription activator-like effectors (TALE) ( Miller et al., 2011 ; Zhang et al., 2011 ; Maeder等人,2013b; Perez-Pinera等,2013b)。Originally discovered as a virus-resistance mechanism from bacteria ( Barrangou et al., 2007 ), the CRISPR-Cas system has provided ef fi cient, precise, and scalable ways to modulate expression of genes, and has been successfully adopted for targeted gene activation ( Mali et al., 2013 ; Perez-Pinera et al., 2013a ; Maeder et al., 2013a ; Cheng et al., 2013年,Tanenbaum等人,2014年;为了使用CRISPR-CAS9实现基因激活,创建了催化失活的Cas9(DCAS9),以与特定的基因组区域结合而没有能力创建双链突破(Jinek et al。,2012; Gasiunas et al。,2012; Qi et al。,2013; Qi et al。,2013; Konermann et; Konermann et al an al an eal; konermann et al。,2013; a e e,2013; i。赋予DCAS9具有诱导基因表达的能力,已经探索了不同的转录激活域的基因激活强度(图1A)。第一代CRISPRA的灵感来自锌纤维和基于故事的方法,并使用了包括VP64或P65在内的单个激活域。vp64由VP16的四个副本组成,该副本是源自单纯疱疹病毒的转录激活因子。p65是NF-κB复合物的一部分,负责免疫信号传导中的转录激活。第二代CRISPRA系统制定了不同的策略来招募不同的激活剂的多个副本,包括用于招募10或24份VP64副本的Suntag阵列到给定的基因座,VP64,P65和RTA(VPR)的串联融合到DCAS9,以及
摘要 RNA 的结构变化是控制基因表达的重要因素,不仅在转录后阶段,而且在转录过程中也是如此。位于初级转录本 5' 区域的核糖开关和 RNA 温度计的子类通过提前终止转录来调节下游功能单元(通常是 ORF)。此类元素不仅自然存在,而且在合成生物学中也是颇具吸引力的装置。因此,设计此类核糖开关或 RNA 温度计的可能性具有相当大的实际意义。由于这些功能性 RNA 元素在转录过程中已经起作用,因此重要的是模拟和了解折叠的动力学,特别是与转录同时形成的中间结构。因此,在进行昂贵且劳动密集型的湿实验室实验之前,共转录折叠模拟是验证设计构造功能的重要步骤。对于 RNA,由于分子的大小和感兴趣的时间尺度,全面的分子动力学模拟远远超出了实际范围。即使在简化的二级结构级别,也需要进一步的近似。 BarMap 方法基于表示二级结构景观
动机:由于高通量和昂贵的测序方法,转录组学数据变得越来越易于访问。但是,数据稀缺性阻止了利用深度学习模型对表型预测的完整预测能力。人工增强训练集,即数据增强,建议作为正规化策略。数据增强对应于训练集的标签不变转换(例如,在文本数据上进行图像和语法解析的几何变换)。不幸的是,这种转换在跨文字组范围内未知。因此,已经提出了深层生成模型,例如生成对抗网络(GAN)来生成其他样本。在本文中,我们分析了基于GAN的数据增强策略,就性能指标和CAR表型的分类分析。
摘要 细胞转录本编码有关细胞身份和疾病状态的重要信息。响应 RNA 生物标志物激活 CRISPR 有可能以时空精度控制 CRISPR 活性。这将能够将 CRISPR 活性限制在表达目标 RNA 生物标志物的特定细胞类型,同时防止其他细胞中出现不必要的活性。在这里,我们提出了一个简单而具体的平台,用于通过工程化脓性链球菌 Cas9 单向导 RNA (sgRNA) 来调节响应 RNA 检测的 CRISPR 活性。sgRNA 被设计成折叠成复杂的二级结构,在基态下抑制其活性。工程化的 sgRNA 在识别互补 RNA 后被激活,从而使 Cas9 能够发挥其功能。我们的方法使 CRISPR 能够在 HEK293T 细胞和斑马鱼胚胎中响应 RNA 检测而激活。迭代 21 设计优化允许开发用于生成能够检测所选 RNA 序列的 sgRNA 22 的计算工具。机制研究表明,工程 23 sgRNA 在 RNA 检测过程中被切割,并且我们确定了受益于 24 化学修饰的关键位置,以提高工程 sgRNA 在体内的稳定性。我们的传感器为使用 CRISPR 26 激活来响应内源性 RNA 生物标志物开发新的研究和治疗应用开辟了新的机会。 27
合成生物学领域的主要目标是开发能够通过激活治疗相关的细胞功能来响应用户定义的输入的工具。响应外部刺激的基因转录和调控是正在探索的这些细胞功能中最强大和用途最广泛的功能之一。受嵌合抗原受体 (CAR) T 细胞疗法成功的推动,基于跨膜受体的平台因其感知细胞外配体并随后激活细胞内信号转导的能力而受到欢迎。跨膜受体与转录激活平台的整合尚未发挥其全部潜力。质粒 DNA 的瞬时表达通常用于体外探索基因调控平台。然而,能够靶向治疗相关的内源性或稳定整合基因的应用更具临床意义。基因调控可能允许工程细胞进入感兴趣的组织并将功能性蛋白质分泌到细胞外空间或分化为功能性细胞。调节转录的跨膜受体有可能在包括癌症治疗和再生医学在内的众多应用中彻底改变细胞疗法。在这篇综述中,我们将研究当前控制哺乳动物细胞转录的工程方法,重点关注可以响应细胞外信号选择性激活的系统。我们还将推测这些技术的潜在治疗应用,并研究有希望扩展其功能并加强对细胞疗法中基因调控的控制的方法。
小胶质细胞是大脑中的常驻免疫细胞,在驱动神经炎症(神经退行性疾病的标志)中起关键作用。可诱导的小胶质细胞样细胞已被开发为用于分子和治疗假说产生和测试的体外平台。然而,没有系统地评估这些细胞与原代人小胶质细胞的相似性以及它们对大脑原代细胞期望的外部提示的反应。在这项研究中,我们通过散装和单细胞RNA测序对市售人类诱导的多能干细胞(IPSC)衍生的小胶质细胞(IPSC)细胞进行了转录表征,以评估其与原发性人类小胶质细胞的相似性。为了评估其刺激反应性,用肝X受体(LXR)途径激动剂处理IMGL细胞及其以散装和单细胞RNA测序为特征的转录反应。批量转录组分析表明,IMGL细胞具有与新鲜分离的人类原代小胶质细胞相似的总体表达谱,并表达许多关键的小胶质细胞转录因子以及功能和疾病相关的基因。值得注意的是,在单细胞水平上,IMGL细胞表现出不同的转录亚群,代表了正常和患病的原发性小胶质细胞中存在的稳态和激活状态。用LXR途径对IMGL细胞进行处理,激动剂会诱导脂质代谢和细胞周期的牢固转录变化。在单细胞水平上,我们观察到稳态和活化状态和激活状态的细胞亚群之间的响应异质性以及反应散装的表达会变化为其相应的单细胞态。总之,我们的结果表明,IMGL细胞表现出复杂的转录曲线和反应性,让人联想到体内小胶质细胞,因此代表了神经变性中治疗性发育的有希望的模型系统。
©作者2025。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问h t p://c r e a t i v e c o m m o ns。or g/l i c e n s e s/b y-n c-n c-n c-n d/4。0/。
德国海德堡德国癌症研究中心的分子遗传学师(C.F.A.,M.I.,B.R.,P.L.,M.Z。 ); HOPP儿童癌症中心海德堡,德国海德堡(D.T.W.J.,M.K.,S.M.P。 );德国海德堡的德国癌症研究中心儿科胶质瘤研究小组(D.T.W.J.,M.K.,S.M.P。 );德国海德堡的德国癌症联盟和德国癌症研究中心儿科神经科学系(S.M.P. ) );德国海德堡海德堡大学医院儿科肿瘤学,血液学和免疫学(S.M.P. ) );德国癌症联盟,德国癌症研究中心,德国海德堡(D.T.W.J.,M.K.,S.M.P.,P.L。 );德国海德堡大学海德堡大学医院病理研究所神经病理学系(又称) );临床合作部门神经病理学,德国转化癌症研究财团,德国癌症研究中心,海德堡,德国(又称 );肿瘤中的群体基因组不稳定性,德国癌症研究中心,德国海德堡(A.E.)德国海德堡德国癌症研究中心的分子遗传学师(C.F.A.,M.I.,B.R.,P.L.,M.Z。); HOPP儿童癌症中心海德堡,德国海德堡(D.T.W.J.,M.K.,S.M.P。);德国海德堡的德国癌症研究中心儿科胶质瘤研究小组(D.T.W.J.,M.K.,S.M.P。);德国海德堡的德国癌症联盟和德国癌症研究中心儿科神经科学系(S.M.P.);德国海德堡海德堡大学医院儿科肿瘤学,血液学和免疫学(S.M.P.);德国癌症联盟,德国癌症研究中心,德国海德堡(D.T.W.J.,M.K.,S.M.P.,P.L。);德国海德堡大学海德堡大学医院病理研究所神经病理学系(又称);临床合作部门神经病理学,德国转化癌症研究财团,德国癌症研究中心,海德堡,德国(又称);肿瘤中的群体基因组不稳定性,德国癌症研究中心,德国海德堡(A.E.)