耳蜗的功能分子表征主要由神经性耳聋遗传结构的解析所驱动。因此,寻找听力领域极为缺乏的治愈性治疗方法已成为一个可能实现的目标,特别是通过耳蜗基因和细胞疗法。为此,一份完整的耳蜗细胞类型清单以及对其基因表达谱直至最终分化的深入表征是必不可少的。因此,我们基于对出生后第 8 天 (P8) 的 120,000 多个细胞的分析,生成了小鼠耳蜗的单细胞转录组图谱,这些细胞处于听力前期,P12 对应于听力开始,P20 对应于耳蜗成熟几乎完成。通过将全细胞和核转录分析与广泛的原位 RNA 杂交试验相结合,我们表征了涵盖几乎所有耳蜗细胞类型的转录组特征并开发了细胞类型特异性标记。发现了三种细胞类型;其中两种构成了容纳主要听觉神经元和血管的耳蜗轴,第三种细胞由内衬前庭阶的细胞组成。结果还揭示了基底膜生物物理特性的声音梯度的分子基础,而这种梯度是耳蜗被动声频分析的关键基础。最后,我们还揭示了几种耳蜗细胞类型中被忽视的耳聋基因表达。该图谱为破译控制耳蜗细胞分化和成熟的基因调控网络铺平了道路,这对于开发有效的靶向治疗方法至关重要。
药效学:药效学描述的是药物与人体受体作用之间的关系,受受体数量和亲和力、药物浓度和遗传因素的影响。此外,基因多态性会影响特定药物的受体数量和受体亲和力的表达和可用性。药代动力学:药代动力学是指药物在体内的吸收、分布、代谢和排泄,通常受各种生物、生理和化学因素的影响。[1] 药代动力学研究确定了特定药物的稳态浓度,同时考虑了剂量、生物利用度和清除率,以及可能改变共同给药全身浓度的药物相互作用。[1] 在抗逆转录病毒药物和其他药物的吸收、代谢或消除阶段,可能会发生药代动力学相互作用。表 1。
抽象背景:羊毛和生长特征的遗传改善是绵羊行业的主要目标,但其潜在的遗传建筑仍然难以捉摸。To improve our understanding of these mechanisms, we conducted a weighted single-step genome-wide association study (WssGWAS) and then integrated the results with large-scale transcriptome data for five wool traits and one growth trait in Merino sheep: mean fibre diameter (MFD), coefficient of variation of the fibre diameter (CVFD), crimp number (CN), mean staple length (MSL),油腻的羊毛重量(GFW)和活体重(LW)。结果:我们的数据集包括7135个具有表型数据的人,其中1217个具有高密度(HD)基因型数据(n = 372,534)。这些动物的707种基因型是从Illumina Ovine单核苷酸多态性(SNP)54 Beadchip归为HD阵列的。这些特征的遗传力范围从0.05(CVFD)到0.36(MFD),并且特征遗传相关性之间的遗传性范围为-0.44(CNvs。lw)至0.77(GFW与LW)。通过从500个样品中使用RNA-seq数据进行整体化(代表16只动物的87种组织类型),我们检测到与六个特征相关的组织,例如肝,肌肉和胃肠道(GI)是LW的最相关组织,白细胞和巨噬细胞是CN的最相关细胞。对于六个性状,鉴定出54个定量性状基因座(QTL),涵盖了21个卵巢常染色体上的81个候选基因。多个候选基因显示出强大的组织特异性表达,例如通过进行全现象关联研究(PHEWAS)bnc1(与MFD)和CHRNB1(LW)分别在皮肤和肌肉中特别表达。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 1 月 24 日发布。;https://doi.org/10.1101/2025.01.22.634193 doi:bioRxiv preprint
1 Pangea Biomed Ltd.,以色列特拉维夫 6971003 2 特拉维夫大学,以色列特拉维夫 69978 3 澳大利亚国立大学科学学院生物数据科学研究所,澳大利亚堪培拉。4 美国国立卫生研究院 (NIH) 国家癌症研究所 (NCI) 癌症数据科学实验室 (CDSL),美国马里兰州贝塞斯达 5 韩国水原成均馆大学医学院和人工智能系精准医学系 6 美国加利福尼亚州拉霍亚 Sanford Burnham Prebys 医学发现研究所癌症中心。 7 美国马萨诸塞州波士顿麻省总医院癌症中心 8 美国马萨诸塞州波士顿哈佛医学院医学系 9 美国马里兰州贝塞斯达美国国立卫生研究院国家癌症研究所癌症研究中心泌尿生殖系统恶性肿瘤分部 10 美国马里兰州贝塞斯达美国国家癌症研究所癌症研究中心女性恶性肿瘤分部。 11 以色列特拉维夫 5262000 Chaim Sheba 医疗中心癌症中心 12 个性化癌症治疗全球创新网络 (WIN) 13 美国马里兰州贝塞斯达美国国家癌症研究所癌症研究中心病理学实验室。 14 美国马里兰州贝塞斯达美国国立卫生研究院国家癌症研究所神经肿瘤学分部。 * 同等通讯作者:gal@pangeabiomed.com (GD)、tuvik@pangeabiomed.com (TB)、eytan.ruppin@nih.gov (ER)、ranit@pangeabiomed.com (RA)
从不同的角度描述了抽象的突触多样性,从释放的特定神经递质到其多样化的生物物理特性和蛋白质组谱。然而,在大脑中所有突触种群中,尚未系统地识别出跨性水平的突触多样性。为了量化和识别神经元细胞类型的特定突触特征,我们将Syngo(突触基因本体学)数据库与小鼠新皮层的单细胞RNA测序数据相结合。我们表明,单独具有与所有基因相同的功率的突触基因可以区分细胞类型。细胞类型的歧视能力并非在突触基因上平均分布,因为我们可以识别具有更大细胞类型的表达的功能类别和突触室。突触基因和特定的Syngo类别属于三种不同类型的基因模块:在所有细胞类型上的逐步表达,选定的细胞类型中的梯度表达以及细胞类别类别或特定于细胞类别的特征。此数据提供了对新皮层突触多样性的更深入的了解,并确定潜在标记,以选择性地识别特定神经元种群中的突触。
长散布元件 1 (L1) 逆转录转座子是一种转座元件,能够通过 RNA 中间体和逆转录步骤的复制粘贴机制在基因组内传播。它们存在于许多真核生物谱系中,但在哺乳动物中一直特别活跃,并且仍然如此,充当着强大的内源诱变剂。它们被细胞核和细胞质中的多层转录和转录后机制强烈抑制,从而限制了它们在生殖细胞、早期胚胎和一组非常狭窄的成人体细胞中的表达和动员。尽管如此,其中一些元件设法挣脱这些锁并插入新的基因组位置,通常落在内含子中,有时会导致遗传疾病 1 。
在几种物种中,抗性和易感个体之间的表型差异与基因表达的组成型变化有关。例如,在对神经毒性杀虫剂有抵抗力的个体中观察到了排毒基因家族的构型过表达。这表明了代谢解毒在抗性中的作用,在某些情况下,允许允许使用哪些基因参与耐药的遗传方法。细胞色素P450单糖酶和三磷酸腺苷(ATP)结合盒(ABC)转运蛋白的情况就是这种情况。5,24 - 29除解毒基因之外,已经记录了编码角质层合成基因的过表达,并导致耐药性和易感性的独立物(即穿透性抗性)之间的表皮变化。30该证据突出了通常基于抗性表型的复杂性,并表明需要研究基因表达以充分理解昆虫抗性。与其他杀虫剂相反,抗药性个体中的表达情况已被广泛阐明,蚊子对CSIS的抗性表型的整个基因表达模式仍然被忽略了。在这里,我们的目标是通过分析蚊子CX的易感和耐DFB个体的构成基因表达来弥补这一差距。pipiens。
Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问h t p://c r e a t i v e c o m m o ns。or g/l i c e n s e s/b y-n c-n c-n c-n d/4。0/。
解密基因如何解释细胞核内转录因子(TF)浓度的信息仍然是基因调节中的一个基本问题。最近的进步揭示了TF分子的异质分布,对精确解码浓度信号提出了挑战。使用荧光果蝇胚胎中荧光标记的TF双子体的高分辨率单细胞成像,我们表明双子体簇中的双聚体积累保留了母体双聚体梯度的空间信息。这些集群通过强度,大小和频率提供精确的空间提示。我们进一步发现,双子靶基因以增强子结合亲和力依赖性方式与这些簇共定位。我们的建模表明,聚类为全球核浓度提供了更快的传感机制,而不是通过简单增强子检测到的自由扩散的TF分子。