CRISPR-CAS9是一种用于基因组编辑和工程的既定方法,包括在对特定基因组裂解事件不完善的修复后,基因表达敲除诱导。Invitrogen™Lentipool V2人CRISPR文库已开发用于功能丧失研究,以确定基因在调节细胞过程中的作用以及对化合物,药物或任何可能影响这些过程的任何扰动者的细胞反应。Lentipool V2人类CRISPR库中包含的CRISPR-CAS9指南RNA(GRNA)是基于专有GRNA设计算法设计的,该算法选择指南以最大程度地敲除效率而不牺牲特异性。每个库包含每个基因的四个序列验证的不同的GRNA矢量构建体,包装为慢病毒颗粒。Lentipool V2人CRISPR库由定制或预定义集合的grnas组成,以特定基因家族为目标,以慢病毒合并格式进行功能基因组学筛选,请参见第29页。
将打靶特定人源基因的 Cas9 和 sgRNA 转染到 HEK293 细胞。转染所用的质粒 DNA 上含有 表达带双端核定位序列 ( NLS )的 Cas9 及 sgRNA 的表达框,通过 TransIT-X2 (Mirus) 转染 试剂进行转染。转染所用的 Cas9 mRNA 进行了假尿苷和 5- 甲基胞嘧啶修饰且带有双端 核定位序列,使用 transIT-mRNA 转染试剂将 sgRNA 和 mRNA 共转染。 Cas9 RNPs 使用脂质 体 RNAiMAX ( Life Technologies ) 进行反向转染, RNP 的终浓度为 10 nmol 。 Cas9 蛋白上不含 核定位序列。 EnGen Cas9 含有双端核定位序列。编辑效率通过 T7E1 实验进行分析,结果 以修饰百分比进行统计。
版权所有 © 2024 STEMCELL Technologies Inc. 保留所有权利,包括图形和图像。STEMCELL Technologies & Design、STEMCELL Shield Design、Scientifics Helping Scientists 和 CellPore 是 STEMCELL Technologies Canada Inc. 的商标。所有其他商标均为其各自所有者的财产。尽管 STEMCELL 已尽一切合理努力确保 STEMCELL 及其供应商提供的信息正确无误,但其不对此类信息的准确性或完整性作出任何保证或陈述。
1 |提供我们免费的演示和试用优惠的PA G E客户提供了进一步的专有数据和专有信息信息,以通过NEPA21系统转染干细胞转染。列出的高效率和高可行性是可重复的(每个电动穿孔)。请随时与我们联系以获取最新数据:sales@sonidel.com
转染时细胞密度(%汇合)。转染时CHO细胞亚型的建议细胞密度≥80%汇合。确定每个CHO细胞亚型的最佳细胞密度,以最大程度地提高转染效率。在转染前18-24小时将细胞划分,以确保细胞在转染时积极分裂并达到适当的细胞密度。DNA纯度。使用高度纯化,无菌和无污染物的DNA进行转染。无内毒素且具有260/280的吸光度比为1.8-2.0的质粒DNA准备。DNA,因为它可能包含高水平的内毒素。我们建议使用Miraclean®内毒素去除试剂盒(miR 5900)从DNA制备中去除内毒素的任何痕迹。TransIt® -cho试剂:DNA比。作为起点,使用3 µL每1 µg DNA的反式IT-CHO试剂。可以通过从每µg 1-5 µl的DNA滴定试剂来确定最佳的反式IT-CHO试剂与DNA比。请参阅第3页的表1,以获取建议的起始条件。CHOMOJO试剂:DNA比率。根据细胞培养和实验条件,可能需要不同的Cho Mojo试剂量。最佳的Cho Mojo试剂:DNA比应通过滴定从每µg每µg DNA滴定为0-2 µl的试剂来确定。请参阅第3页的表1,以获取建议的起始条件。复杂的形成条件。准备trans It-cho:Cho Mojo:无血清生长培养基中的DNA复合物。Mirus建议Opti-Mem I还原媒介。细胞培养条件:适当的培养基中,有或没有血清的培养细胞。无需执行介质更改即可去除转染络合物。反式转染试剂盒在没有转染后培养基变化的情况下进行转染时会提高效率。存在抗生素:抗生素将抑制转染复合物的形成,因此应排除在复合形成步骤中。可以将转染复合物添加到包含低水平抗生素(0.1-1倍终浓度的青霉素/链霉素混合物)的完整培养基中生长的细胞中。转染后的孵育时间。确定每种细胞类型后转染后最佳的孵育时间。最佳孵育时间通常为24-72小时,但会根据实验的目标,质粒的性质和表达蛋白质的半衰期而变化。
要产生慢病毒,HEK 293细胞被编码所需的GAG,POL和REV结构和调节基因的包装质粒以及编码兴趣基因的转移载体(GOI)。复制无能是通过在单独的质粒上表达最小病毒成分来实现的,并通过在转移载体中的3'长末端重复(LTR)的重大删除来结合自我激活(SIN)元素。必需成分与VSV包膜蛋白G结合使用,以进行广泛的病毒质量和纯化过程中稳定性的提高。慢病毒颗粒被分泌到细胞培养基中,在该培养基中收集,过滤并冷冻到等分试样中,以便随后转导到靶细胞中。
将打靶特定人源基因的 Cas9 和 sgRNA 转染到 HEK293 细胞。转染所用的质粒 DNA 上含有 表达带双端核定位序列 ( NLS )的 Cas9 及 sgRNA 的表达框,通过 TransIT-X2 (Mirus) 转染 试剂进行转染。转染所用的 Cas9 mRNA 进行了假尿苷和 5- 甲基胞嘧啶修饰且带有双端 核定位序列,使用 transIT-mRNA 转染试剂将 sgRNA 和 mRNA 共转染。 Cas9 RNPs 使用脂质 体 RNAiMAX ( Life Technologies ) 进行反向转染, RNP 的终浓度为 10 nmol 。 Cas9 蛋白上不含 核定位序列。 EnGen Cas9 含有双端核定位序列。编辑效率通过 T7E1 实验进行分析,结果 以修饰百分比进行统计。
将打靶特定人源基因的 Cas9 和 sgRNA 转染到 HEK293 细胞。转染所用的质粒 DNA 上含有 表达带双端核定位序列 ( NLS )的 Cas9 及 sgRNA 的表达框,通过 TransIT-X2 (Mirus) 转染 试剂进行转染。转染所用的 Cas9 mRNA 进行了假尿苷和 5- 甲基胞嘧啶修饰且带有双端 核定位序列,使用 transIT-mRNA 转染试剂将 sgRNA 和 mRNA 共转染。 Cas9 RNPs 使用脂质 体 RNAiMAX ( Life Technologies ) 进行反向转染, RNP 的终浓度为 10 nmol 。 Cas9 蛋白上不含 核定位序列。 EnGen Cas9 含有双端核定位序列。编辑效率通过 T7E1 实验进行分析,结果 以修饰百分比进行统计。
由于这些生物的困难生物学,反向遗传学在人类丝状寄生虫中的应用滞后。最近,我们开发了一种共同培养系统,该系统允许转染Brugia Malayi的感染性幼体阶段并有效地发展为Fecund成年人。这是开发基于Piggybac Transposon的工具包的,该工具包可用于生产具有稳定整合到寄生虫基因组中的转基因序列的寄生虫。然而,PiggyBac系统通常已被基于群的常规间隔短篇小学重复序列(CRISPR)技术取代,这允许精确编辑基因组。在这里,我们报告了适应b。马来语用于CRISPR介导的敲入插入寄生虫基因组。在b的基因间区域中鉴定出合适的CRISPR插入位点。马来语基因组。修改了双重记者Piggybac载体,用插入位点的序列替换了Piggybac倒的末端重复区域。b。用合成引导RNA,修饰的质粒和cas9核酸酶转染马来语或其。将转染的寄生虫植入沙鼠中,并允许发展为成年人。后代微丝菌进行了筛选,并筛选了质粒中编码的分泌的荧光素酶报告器的表达。发现大约3%的微丝虫分泌荧光素酶;所有这些都包含插入寄生虫基因组中预期位置的转基因序列。这些数据表明CRISPR可用于修改B的基因组。使用适配器介导的PCR测定法,检查了转基因微丝菌是否存在关闭目标插入;没有发现脱靶插入。马来语,开辟了精确编辑这种重要人类丝状寄生虫的基因组的道路。