| 旨在实现碳中和 “气田”通常是指地下化石天然气储备。加伯斯多夫的研究项目“可再生气田”暗示了由能源服务提供商 Energie Steiermark 牵头的项目合作伙伴的目标:有限能源的可再生替代品。该项目展示了如何通过采用成熟的可再生能源技术并根据当地情况将它们有效结合起来,在碳中和的基础上改造奥地利的能源系统。该项目的一个重要组成部分是日立造船 Inova (HZI) 的催化甲烷化技术,该技术首次在加伯斯多夫用于处理原始沼气。
摘要:工业部门脱碳对于实现可持续的未来至关重要。碳捕获和储存技术是主要选择,但最近,使用二氧化碳也被认为是一种非常有吸引力的替代方案,可以实现循环经济。在这方面,电转气是一种很有前途的选择,可以利用可再生 H 2 ,将其与捕获的二氧化碳一起转化为可再生气体,特别是可再生甲烷。由于可再生能源生产或可再生能源生产与消费之间的不匹配不是恒定的,因此必须储存可再生 H 2 或二氧化碳,以正常运行甲烷化装置并生产可再生气体。这项工作分析并优化了系统布局和存储压力,并提出了年度成本(包括资本支出和运营支出)最小化。结果表明,需要适当的压缩阶段来实现最小化系统成本的存储压力。该压力略低于二氧化碳的超临界压力,低于氢气的较低压力,约为 67 巴。最后一个量与储存和分配天然气的通常压力一致。此外,即使质量较低,H 2 的储存成本也高于 CO 2 ;这是因为 H 2 的密度低于 CO 2 。最后,结论是,压缩机成本是 CO 2 压缩中最相关的成本,但储罐成本是 H 2 中最相关的成本。
摘要:人们对全球温室气体排放的日益关注促使电力系统利用清洁高效的资源。与此同时,可再生能源在全球能源前景中发挥着至关重要的作用。然而,这些资源的随机性增加了对储能系统的需求。另一方面,由于多能源系统比单一能源系统效率更高,因此开发基于不同类型能源载体的此类系统对公用事业公司来说更具吸引力。因此,本文对多载体微电网 (MCMG) 在存在高效技术(包括压缩空气储能 (CAES) 和电转气 (P2G) 系统)的情况下的运行进行了多目标评估。该模型的目标是最大限度地降低运营成本和环境污染。除了充电和放电模式外,CAES 还具有简单循环模式操作,从而为系统提供更大的灵活性。此外,该模型还采用了需求响应程序来缓解峰值。所提出的系统参与电力和天然气市场以满足能源需求。采用加权和方法和基于模糊的决策来折中冲突目标函数的最优解。在样本系统上检验了多目标模型,并讨论了不同情况下的结果。结果表明,耦合 CAES 和 P2G 系统可减轻风电弃风,并将成本和污染分别降至 14.2% 和 9.6%。
土耳其统计研究所杜汉土耳其统计研究所电话: +90-312-4547053电子邮件:duhan.civit@tuik.gov.gov.tr mualla gizem gizem umutdoğandoğandoğandoğandoğandoğandoğanto Betül DEMİROK Turkish Statistical Institute Tel: +90-312-4547791 e-mail: betul.bayguven@tuik.gov.tr Erhan ÜNAL (National Inventory Focal Point) Turkish Statistical Institute Tel: +90-312-4547803 e-mail: erhan.unal@tuik.gov.tr Kadir AKSAKAL土耳其统计研究所电话: +90-312-4547802电子邮件:kadir.aksakal@tuik.gov.tr elif yilmaz yilmaz yilmaz turkish turkish统计研究所电话: +90-312-4547817电子邮件: +90-312-4547819 e-mail: fehmipar.bekci@tuik.gov.tr Turkish Statistical Institute is responsible for all cross-cutting issues, energy (except for 1.A.1.a Public Electricity and Heat Production and 1.A.3 Transport), industrial processes and product use (except for fluorinated gases), agriculture and waste sectors.
电转气技术可以实现电网与气网间能量的双向流动,有利于改善综合能源系统的能量耦合、提高运行灵活性和经济性。本研究根据电转气设备的特点,在改进的P2G模型基础上,提出了详细的综合能源系统模型,并提出最优效率匹配系数以提高能源设备利用率。针对碳排放分配问题,引入碳交易机制,建立兼顾经济效益与成本(即销售效益、运营成本、碳交易成本、风电和光伏限电惩罚措施)的优化模型。案例研究验证了所提优化模型的优越性。此外,结果表明带气罐的电转气模式在综合能源系统综合运行能力方面具有明显优势。
W 窑 cm -2 曰 持续增加到 2.0 bar 袁 功率密度进一步提升 达到 0.94 W 窑 cm -2 ( 图 4E). Chen 等 [47] 报道 Co-N-C 催化剂在空气的燃料电池测试中压力从 0.5 bar 提 升至 2 bar 上 袁 最高功率密度从 0.221 W 窑 cm -2 提升 到 0.305 W 窑 cm -2 ( 图 4F). 文献中记录的非贵金属催 化剂燃料电池测试压力一般不大于 2 bar 袁 在此范 围内催化剂燃料电池的性能随着压力的增加而提 升 袁 压力过大会造成催化剂层结构的破坏并加速 膜电极的退化 . 目前 袁 鲜有对测试过程中气流量影 响的探究 . 从表 1 中发现 袁 大部分基于非贵金属催 化剂的 PEMFC 性能测试是采取固定气流量的方 式 袁 但气流量的选择并没有统一标准 袁 其中空气的 气流量一般等于或大于氧气的气流量 . 4 非贵金属催化剂耐久性分析
电转气 (P2G) 设施和天然气发电装置为综合电力和天然气系统 (IENGS) 提供了灵活性,可用于风电调节和爬坡部署。本文提出了一种考虑 P2G 储能和风电爬坡成本的 IENGS 随机协调调度模型。介绍了带有 P2G 的天然气系统的运行模型,并分析了 P2G 集成的优势。为了解决风电和能源负荷的不确定性,生成了多种代表性场景。本文结合并分析了灵活的爬坡要求和成本,发现 P2G 可以提供灵活的爬坡。IENGS 的协调调度模型被表述为一个两阶段随机规划问题,其中第一阶段模型对电力系统的日前调度进行建模,第二阶段模型对天然气系统进行调度。对改进的 PJM 5 总线电力系统(带有 7 节点天然气系统)以及 IEEE 118 总线系统(带有 20 节点比利时天然气系统)进行的数值案例研究验证了 P2G 可以帮助容纳风电、提供额外的灵活爬坡能力并减少来自天然气供应商的天然气供应和天然气负荷削减。