3.2公司提议Nivolumab – Relatlimab是Nivolumab Plus ipilimumab不合适或可接受的选择。也就是说,对于通常会提供pembrolizumab或Nivolumab单一疗法的人。临床专家一致认为,Nivolumab Plus ipilimumab组合治疗不适合的人是将提供Nivolumab – Relatlimab的主要人群。这是因为它比Nivolumab加上ipilimumab更好。他们还同意符合Nivolumab Plus ipilimumab的一小部分人(不想要ipilimumab的毒性)可能会选择Nivolumab – Relatlimab。他们强调,患者的选择是未经治疗的不可切除或转移性黑色素瘤的治疗途径的重要因素。患者组织的提交说,如果
摘要 化疗仍然是各种肿瘤的主要治疗方法,由于转移,化疗通常伴有不良预后。含有 CREKA 靶向部分的聚乙二醇化脂质体是众所周知的治疗剂,尤其是在高度转移的实验模型中。CREKA 专门针对存在于原发性和转移性肿瘤部位的肿瘤相关 ECM。为了更好地了解靶向部分的功能,我们决定设计各种脂质体配方,其中不同数量的靶向部分附着在其 DSPE-PEG 分子上。此外,设计了一种新的肿瘤归巢五肽 (SREKA),并设计了一种 SREKA 和 DSPE-PEG 之间的新型结合策略。首先,研究了载药脂质体的体外增殖抑制及其货物的细胞摄取。然后,测量了小鼠血液中的脂质体稳定性和不同组织中的药物积累。此外,还检查了不同脂质体制剂在体内的肿瘤生长和转移抑制效力。根据我们的比较研究,SREKA-脂质体在配制后具有统一的表型,并且具有与 CREKA-脂质体相似的特性和肿瘤归巢能力。然而,在结合过程中将 N 端半胱氨酸交换为丝氨酸可提高产量,并且在与 DSPE-PEG 结合时具有更好的稳定性。我们还表明,SREKA-脂质体对原发性肿瘤生长和转移发生率有显著的抑制作用;此外,还提高了荷瘤小鼠的存活率。此外,我们提供的证据表明,附着在 DSPE-PEG 上的靶向部分的数量在很大程度上决定了脂质体的稳定性,因此它在毒性和靶向性方面起着重要作用。
脑转移性癌症构成了重要的临床挑战,患者的治疗选择有限,预后不良。近年来,免疫疗法已成为解决脑转移的一种有前途的策略,比传统治疗具有明显的优势。本评论探讨了在脑转移性癌症的背景下肿瘤免疫疗法不断发展的景观,重点是肿瘤微环境(TME)和免疫治疗方法之间的复杂相互作用。通过阐明TME内的复杂相互作用,包括免疫细胞,细胞因子和细胞外基质成分的作用,该综述突出了免疫疗法重塑脑转移治疗范式的潜力。利用免疫检查点抑制剂,细胞免疫疗法和个性化治疗策略,免疫疗法有望克服血脑屏障和免疫抑制脑转移的微观环境所带来的挑战。通过对当前研究发现和未来方向的全面分析,这项综述强调了免疫疗法对脑转移癌管理的管理性影响,为个性化和精确的治疗干预提供了新的见解和机会。
摘要简介:关于日常实践中癌症患者指南实施的基于人群的数据很少,而实践中的差异可能会影响患者的治疗结果。因此,我们评估了荷兰转移性结直肠癌 (mCRC) 全身治疗的治疗模式和相关变量。材料和方法:我们从 20 家(4 家学术医院、8 家教学医院和 8 家地区医院)国家癌症登记处随机选择了 2008 年至 2015 年确诊的成年 mCRC 患者样本。我们研究了患者、人口统计学和肿瘤特征对根据现行指南接受全身治疗的几率的影响,并评估了其与生存率的关联。结果:我们的研究人群包括 2222 名 mCRC 患者,其中 1307 名患者接受了 mCRC 全身治疗。实践差异在 (K)RAS 野生型肿瘤患者使用贝伐单抗和抗 EGFR 治疗方面最为明显。不同类型的医院的给药率并无差异,但不同医院的贝伐单抗(8 – 92%;p < .0001)和抗 EGFR 治疗(10 – 75%;p ¼ .05)的给药率存在波动。贝伐单抗给药与高龄(OR:0.2;95%CI:0.1 – 0.3)、合并症(OR:0.6;95%CI:0.5 – 0.8)和异时性转移(OR:0.5;95%CI:0.3 – 0.7)呈负相关,但贝伐单抗给药率低或高的医院的患者特征并无差异。暴露于贝伐单抗和抗 EGFR 治疗的风险比分别为 0.8(95%CI:0.7 – 0.9)和 0.6(95%CI:0.5 – 0.8)。讨论:我们发现,不同医院对转移性结直肠癌患者的靶向治疗管理存在显著差异,这可能会影响治疗结果。年龄和合并症与未使用贝伐单抗呈负相关,但无法解释不同医院的实践差异。我们的数据表明,实践差异是基于医院的个体策略,而不是指南建议或患者驱动的决策。个别医院的策略是另一个因素,可能可以解释实际数据与临床试验结果之间的差异。
摘要◥目的:大约20%的RAS野生型转移性结直肠癌(MCRC)的患者经历了对抗EGFR抗体西素单抗的客观反应,但很少实现消除疾病。肿瘤收缩的程度与长期结局相关。我们的目的是找到合理组合,通过破坏对抗凋亡分子的适应性依赖性(BCL2,BCL-XL,MCL1)来增强西妥昔单抗的效率。实验设计:实验是在患者衍生的异种移植物(PDX)和类器官(PDXO)中进行的。凋亡的底漆。促凋亡和抗凋亡蛋白复合物。通过caspase激活PDXOS和监测PDX生长来评估组合疗法的影响。结果:由314个PDX队列中的人口试验,由许多患者确定,确定46个模型(14.6%),具有明显的
由于预训练的深度学习模型大量可用,迁移学习在计算机视觉任务中变得至关重要。然而,从多样化的模型池中为特定的下游任务选择最佳的预训练模型仍然是一个挑战。现有的衡量预训练模型可迁移性的方法依赖于编码静态特征和任务标签之间的统计相关性,但它们忽略了微调过程中底层表示动态的影响,导致结果不可靠,尤其是对于自监督模型。在本文中,我们提出了一种名为 PED 的富有洞察力的物理启发方法来应对这些挑战。我们从势能的视角重新定义模型选择的挑战,并直接模拟影响微调动态的相互作用力。通过捕捉动态表示的运动来降低力驱动物理模型中的势能,我们可以获得增强的、更稳定的观察结果来估计可迁移性。在 10 个下游任务和 12 个自监督模型上的实验结果表明,我们的方法可以无缝集成到现有的排名技术中并提高其性能,揭示了其对模型选择任务的有效性以及理解迁移学习机制的潜力。代码可在 https://github.com/lixiaotong97/PED 上找到。
“没有足够的数据建议或反对执行常规磁共振成像以筛选脑转移的情况。由于HER2+晚期乳腺癌患者脑转移的发生率很高,临床医生的大脑MRI阈值应低。”
•了解分类和风险分层的生物学假设,治疗学领域的持续/必需研究以及使用对乳腺癌的生物标志物精确医学的使用方法的知识。
免责声明 不能替代专业建议 本报告主要旨在帮助加拿大卫生系统领导者和政策制定者做出明智的决定,从而提高医疗服务的质量。虽然患者和其他人可以使用本报告,但本报告仅供参考和教育之用。本报告不应被用作对特定患者护理的临床判断或任何决策过程中的其他专业判断的替代,也不应被用作专业医疗建议的替代。 责任 pCODR 对所披露的任何信息、药物、疗法、治疗、产品、流程或服务的准确性、完整性或实用性不承担任何法律责任。信息按“原样”提供,建议您在依赖之前自行验证并咨询医学专家。您不应要求 pCODR 对您如何使用本报告中提供的任何信息负责。pCODR 生成的报告由基于制药商、肿瘤组织和其他来源提供的信息的解释、分析和意见组成。pCODR 对此类解释、分析和意见的使用不承担任何责任。根据 pCODR 的基础文件,pCODR 提供的任何调查结果对任何组织(包括资助机构)均不具有约束力。pCODR 特此声明,对于使用 pCODR 生成的任何报告,不承担任何责任(为进一步明确,“使用”包括但不限于资助机构或其他组织决定遵循或忽略 pCODR 报告中提供的任何解释、分析或意见)。资金 加拿大肿瘤药物审查由各省和地区共同资助,魁北克省除外,目前魁北克省不参与 pCODR。
RodrigoSánchez-Bayona,医学博士博士医学肿瘤学,Octubre(西班牙马德里)ENSO年轻肿瘤学家委员会成员
