• 新兴临床和临床前机制数据表明,与肺癌相比,KRAS 突变型结直肠癌 (CRC) 对突变型选择性 KRAS 抑制剂的敏感性较低。 • 这种差异归因于 CRC 中更高的基底受体酪氨酸激酶 (RTK) 活性和频繁的致癌基因共突变。 • 泛 RAS 抑制剂(例如 RMC-6236)也在 CRC 中进行临床研究,但目前尚不清楚它们的疗效是否会受到类似谱系特异性因素的限制,因为泛 RAS 抑制应能阻止通过野生型 RAS 的信号传导重新激活。 • 我们之前已经表明,法呢基转移酶抑制剂 (FTI) 通过阻断 RHEB 对 mTOR 的激活,使肿瘤对靶向药物(例如 PI3Kα 和突变型选择性 KRAS 抑制剂)敏感。 • 我们假设 RTK 介导的 PI3K-AKT-mTOR 信号传导的重新激活仍然是 CRC 中泛 RAS 抑制剂的负担,并且 FTI KO-2806 将通过减弱这种适应性反应来增强 RMC-6236 在 RAS 抑制剂初治和预处理环境中的活性。
1。马萨诸塞州波士顿波士顿儿童医院神经病学系2。 马萨诸塞州波士顿儿童医院儿科,遗传学和基因组学系 马萨诸塞州波士顿哈佛医学院生物医学信息学系4. 美国马萨诸塞州波士顿的哈佛医学院和马萨诸塞州医学院和马萨诸塞州的健康科学与技术计划5. 霍华德·休斯医学院,雪佛兰大通,马里兰州6。 生物学和生物医学科学研究生课程,哈佛医学院,马萨诸塞州波士顿7。 Ph.D. 日本伊巴拉基塔库巴大学的人类生物学计划,日本8。 生命与环境科学研究所,杜斯库巴大学,杜斯库巴大学,日本伊巴拉基,日本†这些作者为这项工作做出了同样的贡献。 *信件:Christopher.walsh@childrens.harvard.edu; peter_park@hms.harvard.edu马萨诸塞州波士顿波士顿儿童医院神经病学系2。马萨诸塞州波士顿儿童医院儿科,遗传学和基因组学系马萨诸塞州波士顿哈佛医学院生物医学信息学系4.美国马萨诸塞州波士顿的哈佛医学院和马萨诸塞州医学院和马萨诸塞州的健康科学与技术计划5.霍华德·休斯医学院,雪佛兰大通,马里兰州6。生物学和生物医学科学研究生课程,哈佛医学院,马萨诸塞州波士顿7。Ph.D. 日本伊巴拉基塔库巴大学的人类生物学计划,日本8。 生命与环境科学研究所,杜斯库巴大学,杜斯库巴大学,日本伊巴拉基,日本†这些作者为这项工作做出了同样的贡献。 *信件:Christopher.walsh@childrens.harvard.edu; peter_park@hms.harvard.eduPh.D.日本伊巴拉基塔库巴大学的人类生物学计划,日本8。生命与环境科学研究所,杜斯库巴大学,杜斯库巴大学,日本伊巴拉基,日本†这些作者为这项工作做出了同样的贡献。*信件:Christopher.walsh@childrens.harvard.edu; peter_park@hms.harvard.edu
这项前瞻性研究发生在意大利的2家儿科医院,其中UC和PSC患者,单独使用UC患者以及对照年龄在2至19岁之间的患者的患者被招募。使用标准体格检查和实验室发现对患者进行了PSC诊断,并在内窥镜逆行胆管造影,磁共振胆管造影或肝活检中添加了特征性发现。继发性硬化性胆管炎患者被排除在外。使用Porto标准和蒙特利尔分类将患者诊断为UC。粪便样品,这些样品均接受了细菌和真菌元基因组分析。线性判别分析效应大小用于确定分类群的丰度。
KO-2806,一种Farnesyl转移酶抑制剂,将KRAS G12C NSCLC肿瘤重新敏感为KRAS G12C突变体特异性抑制剂
167 168图1。L.(L。)墨西哥具有保存良好的NAT10同源物。A.在人类,墨西哥L.和S. cerevisiae中分布169个Nat10域。所有三个物种共享Nat10酶功能的170个必需域:TMCA,解旋酶,GNAT和TRNA。每个域上方的数字171表示每个域内氨基酸的起点和末端位置。172不同利什曼原虫物种和酿酒酵母之间Nat10的序列身份约为173,约为36%,而L.(L。)墨西哥和人类Nat10之间的身份为39.4%。174 L.(L。)墨西哥的GNAT结构域分别显示为43.86%和46.43%的序列身份,分别与175个酿酒酵母和人类中的175个相应域。B.预测了L.(L。)墨西哥,酿酒酵母的176 Nat10蛋白的3D结构,以及人类突出了GNAT(蓝色),177个TRNA结合(红色),TMCA(紫色)和解旋酶(绿色)(绿色)领域,表明L.(L.)178墨西哥蛋白质具有高度的水平。179 C. GNAT结构域的结构覆盖层显示了三种蛋白质中的高度结构保护180,进一步说明了该关键功能域中的相似性。181 182
摘要:半胱氨酸在植物的硫代谢网络中起关键作用,密切影响有机硫的转化率以及植物承受非生物胁迫的能力。在茶厂中,丝氨酸乙酰转移酶(SAT)基因出现是半胱氨酸代谢的关键调节剂,尽管显然缺乏全面的研究。利用隐藏的马尔可夫模型,我们确定了茶叶基因组中的七个CSSSAT基因。生物信息学分析的结果表明,这些基因的平均分子量为33.22 kd,簇分为三个不同的组。关于基因结构,CSSSAT1在十个外显子中脱颖而出,比其家庭成员高得多。在启动子区域中,与环境反应性和激素诱导相关的顺式作用元素占主导地位,分别占34.4%和53.1%。转录组数据显示,在各种应力条件下(例如PEG,NaCl,Cold,Meja)及其在茶厂中的组织特异性表达模式,CSSSAT的复杂表达动力学。值得注意的是,QRT-PCR分析表明,在盐应力下,CSSSAT1和CSSSAT3表达水平显着增加,而CSSSAT2表现出下调趋势。此外,我们克隆了CSSSAT1 -CSSSAT3基因,并构造了相应的原核表达载体。产生的重组蛋白在诱导后显着增强了大肠杆菌BL21的NaCl耐受性,这表明CSSSATS潜在的应用在增强植物抗性抗性的抗性中。这些发现丰富了我们对CSSSATS基因在压力耐受性机制中扮演的多方面角色的理解,为未来的科学努力和研究追求奠定了理论基础。
目的:由于胶质母细胞瘤具有快速生长的特性,其诊断和治疗具有挑战性。确定该疾病的新特征对于改善患者护理非常重要。本研究探讨了细胞周期检查点激酶 Mps1 的过度表达与胶质母细胞瘤患者预后之间的关联。方法:我们分析了 U251 胶质母细胞瘤细胞中 Mps1 敲低后的在线转录组和蛋白质组数据。进行了基因本体富集分析以确定 Mps1 敲低后激活的关键通路。结果:分析显示,细胞周期转换和响应 DNA 损伤的内在凋亡通路是 Mps1 敲低后激活的主要通路。三种基因和蛋白质成为共同靶标:BCL2L1(编码蛋白质 Bcl-xL)下调,而 CDKN1A(编码 p21)和 SETD2(编码组蛋白甲基转移酶 SETD2)上调。结论:本研究首次报道了Mps1抑制与SETD2过表达之间的关联,为胶质母细胞瘤的治疗提供了新的视角。关键词:Mps1,胶质母细胞瘤,基因本体论,转录组学,蛋白质组学,SETD2
辅激活因子相关精氨酸甲基转移酶 1 (CARM1) 是一种精氨酸甲基转移酶,它在翻译后修饰调节 RNA 生成和加工多个水平的蛋白质。其底物包括组蛋白、转录因子、转录共调节因子和剪接因子。CARM1 在许多不同类型的癌症中过度表达,并且经常促进转录因子程序,这些程序被选为转化细胞状态的驱动因素,这一过程称为转录因子成瘾。针对这些致癌转录因子途径很困难,但可以通过去除它们所依赖的关键辅激活因子的活性来解决。 CARM1 广泛表达,其 KO 对胚胎发育的危害小于精氨酸甲基转移酶蛋白精氨酸甲基转移酶 1 和蛋白精氨酸甲基转移酶 5 的缺失,这表明 CARM1 的治疗靶向性可能具有良好的耐受性。在这里,我们将总结从小鼠研究中收集到的 CARM1 的正常体内功能,扩展受 CARM1 调控的转录途径,最后重点介绍最近在不同生物环境中确定 CARM1 致癌特性的研究。本综述旨在激发人们对开发针对 CARM1 的人类药物疗法的兴趣,因为目前尚无可用于临床试验的 CARM1 抑制剂。
抽象的背景和目标:2型糖尿病因其发病率和并发症率上升而成为一个困难的健康问题。对糖尿病(DM)的研究主要集中在理解氧化应激和炎症作为发病机理的潜在机制和预防长期后果的基本机制上。该研究旨在研究血清γ-谷氨酰转移酶(GGT)和高灵敏度C反应蛋白(HS-CRP)水平与2型糖尿病患者与2型糖尿病患者的血糖控制(HBA1C)与2型糖尿病患者的糖尿病患者的关联。在这项研究中,还研究了GGT和HS-CRP与血糖控制(HBA1C)之间的相关性。材料和方法:对108名受试者进行了基于医院的观察性研究,其中三组是HBA1C水平少于7%的2型受试者(第1组),36名受试者是2型DM患者,HBA1C水平2型DM患者(2组)超过7%(组2组),组为3组,由年龄和性别匹配的受试者组成。血清GGT,血清HS-CRP,空腹血糖(FBS)和糖化血红蛋白(HBA1C)水平。结果:与具有良好血糖对照和正常健康受试者的患者相比,在2型DM血糖对照的2型DM患者中,平均血清GGT和血清HS-CRP的水平显着提高; p值<0.001。GGT和HS-CRP与HBA1C以及GGT和HS-CRP之间存在显着的正相关。结论:本研究表明,在2型糖尿病中,血清GGT和HS-CRP浓度显着增加。这项研究表明,氧化应激和炎症在2型DM患者的并发症的发病机理和发育中起着至关重要的作用。关键字:2型糖尿病,氧化应激,炎症,γ谷氨酸转移酶,高灵敏度C-反应性蛋白